Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\text{x(x-y+z)=-11
y(y-z-x)=25
z(z+x-y)=35 }\)
Cộng lại ta đc: x2+ y2+ z2 -xy +xz -yz-xy +xz -yz = x2+ y2+ z2 -2xy +2xz -2yz = ( x- y+ z)2=49
\(\Leftrightarrow\)x-y+z = 7 thay vào x(x-y+z)=-11 ta có: x. 7=-11 suy ra x= -11/7
z(z+x-y)=35 ta có: z .7 =35 suy ra z = 5
Thay x và z vào đẳng thức còn lại ta tìm đc y bn tự lm nhé!
b,xy=2/3
yz=0,6
zx=0,625
Nhân 3 đẳng thức trên với nhau ta đc:
xy.yz.zx = 2/3 . 0,6 . 0,625
\(\Leftrightarrow\)(xyz)2= 0, 25
\(\Leftrightarrow\)xyz = 0,5 thay vào xy = 2/3 ta có: z = 0,5 : 2/3 = 3/4 ( lấy xyz chia cho xy)
Tự lm tiếp nhé!
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)
\(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)
CM tương tự ta cũng có : \(x=y;y=z\)
\(\Rightarrow x=y=z\) Thay vào B ta được :
\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)
Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0
Suy ra x;y;z khác 0
Đặt \(2=a;4=b;6=c\) khi đó ta có:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)
Mà \(x;y;z\ne0\) suy ra:
\(ayz+bxz=bxz+xcy=cxy+ayz\)
\(\Rightarrow az=cx;bx=ay\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak;y=bk;z=ck\)
Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{k}{2}=k^2\)
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)
Thay số vào,ta được:
\(x=1;y=2;z=3\)
b) (xyz)^2 = 2/3 * 0,6 * 0,625 = 0,25
xyz = 0,5
=> z= xyz : xy = 0,5 : 2/3 = 0,75
=>.....
=> ....