Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^3-x-2x-2=2-y\\y^3-y-2y-2=2\left(2-z\right)\\z^3-z-2z-2=3\left(2-x\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(x^2-1\right)-2\left(x+1\right)=2-y\\y\left(y^2-1\right)-2\left(y+1\right)=2\left(2-z\right)\\z\left(z^2-1\right)-2\left(z+1\right)=3\left(2-x\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left[x\left(x-1\right)-2\right]=2-y\\\left(y+1\right)\left[y\left(y-1\right)-2\right]=2\left(2-z\right)\\\left(z+1\right)\left[z\left(z-1\right)-2\right]=3\left(2-x\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(x^2-x-2\right)=2-y\\\left(y+1\right)\left(y^2-y-2\right)=2\left(2-z\right)\\\left(z+1\right)\left(z^2-z-2\right)=3\left(2-x\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2\left(x-2\right)=2-y\\\left(y+1\right)^2\left(y-2\right)=2\left(2-z\right)\\\left(z+1\right)^2\left(z-2\right)=3\left(2-x\right)\end{cases}}\)
Nhân các vế của 3 phương trình với nhau ta được:
\(\left(x+1\right)^2\left(x-2\right)\left(y+1\right)^2\left(y-2\right)\left(z+1\right)^2\left(z-2\right)=6\left(2-y\right)\left(2-z\right)\left(2-x\right)\)
\(\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=-6\left(y-2\right)\left(z-2\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6\left(y-2\right)\left(x-2\right)\left(z-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6\right]=0\)
Vì \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6>0\)
Nên \(\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-2=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}}\)
Vậy x = y = z = 2
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2\left(x-2\right)=2-y\\\left(y+1\right)^2\left(y-2\right)=2\left(2-z\right)\\\left(z+1\right)^2\left(z-2\right)=3\left(2-x\right)\end{cases}}\)
nhân từng vế của pt , ta có \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2\left(x-2\right)\left(y-2\right)\left(z-2\right)=6\left(2-x\right)\left(2-y\right)\left(2-z\right)\)
\(\Leftrightarrow\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6\right]\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\)
đến đây thì dễ rồi, sẽ => x=2, hoặc y=2 hoặc z=2, thay vao rồi giải nhé
thank you Vũ Tiền Châu ^^