Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)
\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)
Thay vào lần lượt ta có:
\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Ta có
\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)
Ap dụng tính chất DTSBN
\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)
Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với
b) \(\frac{x-1}{2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3y-6}{9}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50+3-2-6}{9}=\frac{45}{9}=5\)=>x-1=5.2=10
=>x=11
y-2=5.3=15
=>y=17
z-3=5.4=20
=>z=23
Vậy (x;y;z)=(11;17;23)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+x-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x+y+z khác 0).Do đó x+y+z = 0.5
Thay kq này vào bài ta được:
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
Tức là : \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
a)Theo đề bài và t/c dãy tỉ số bằng nhau suy ra:
\(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)(1)
Mặt khác \(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\) .
Do đó \(x+y+z=\frac{1}{2}\Rightarrow x+y=\frac{1}{2}-z;...\text{tương tự mấy cái kia}\)
Suy ra \(\frac{x}{z+y+1}=\frac{1}{2}\Leftrightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Leftrightarrow\frac{2x}{3-2x}=\frac{1}{2}\)
\(\Leftrightarrow4x=3-2x\Leftrightarrow x=\frac{1}{2}\) .Tương tự với hai phân thức kia ta được: \(x=y=z=\frac{1}{2}\)
ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
a,Sử dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)
\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)
ta co \(\frac{x+z+2}{y}\)=\(\frac{y+z+1}{x}\)=\(\frac{x+y-3}{z}\)=\(\frac{x+z+2+y+z+1+x+y-3}{x+y+z}\)
=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)=>\(x+y+z\)=\(\frac{1}{2}\)
=>\(\frac{x+z+2}{y}\)=\(\frac{1}{\frac{1}{2}}\)=2 =>\(\frac{x+z+2}{y}\)+\(1\)=\(3\)
=>\(\frac{x+y+z+2}{y}\)=\(3\)=>\(\frac{5}{\frac{2}{y}}\)=\(3\) =>\(y\)=\(\frac{5}{6}\)
tinh x ,z cung tuong tu nhu vay
ê hoàn ơi mày là thằng gà, hồi trc mày còn bảo tao cách làm vậy o tao voi nhe thang hoan kia
mà bây giờ mày quên là sao, ngu ko tả nổi, mà mày k ch
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\)(*)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)(Dãy tỉ số bằng nhau)
\(=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\)
Thay vào (*), ta có:
\(\frac{\left(\frac{1}{2}-x\right)+1}{x}=\frac{\left(\frac{1}{2}-y\right)+2}{y}=\frac{\left(\frac{1}{2}-z\right)-3}{z}=2\)
\(\Rightarrow\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{5}{2}-y\\2z=-\frac{5}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}.\)