Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow x=12k;y=9k;z=5k\)
Có: xyz=20
=>\(12k\cdot9k\cdot5k=20\)
=>\(k^3=\frac{1}{27}\)
=>\(k=\frac{1}{3}\)
=>\(\begin{cases}x=4\\y=3\\z=\frac{5}{3}\end{cases}\)
Đặt: \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow\begin{cases}x=12k\\y=9k\\z=5k\end{cases}\)
Mà xyz = 20 => 12k.9k.5k = 20 => 540k3 = 20
=> k3 = \(\frac{1}{27}\)
=> k = \(\frac{1}{3}\)
\(\Rightarrow\begin{cases}x=4\\y=3\\z=\frac{5}{3}\end{cases}\)
Theo bài ra: x/3=y/4=z/5
Đặt x/3=y/4=z/5=k
Suy ra: x=3k, y=4k, z=5k
Thay vào ra ta có:
2×(3k)^2+2×(4k)^2+3×(5k)^2=-100
.... tự làm tiếp nha bạn😀😀😀
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
Ta có
\(\frac{x}{2}=\frac{y}{4}=\frac{3z}{5}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}\)
Từ \(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}\)theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}=\frac{3x-3y+3z}{6-12+5}=\frac{3\left(x-y+z\right)}{-1}=-15\left(x-y+z=5\right)\)
Suy ra
\(\frac{x}{2}=-15\Rightarrow x=-15.2\Rightarrow x=-30\)
\(\frac{y}{4}=-15\Rightarrow y=-15.4\Rightarrow y=-60\)
\(\frac{3z}{5}=-15\Rightarrow3z=-15.5\Rightarrow z=-75\div3\Rightarrow z=-25\)
Vậy \(x=-30;y=-60;z=-25\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x}{9}=\frac{2y}{12}=\frac{3x-2y-z}{9-12-8}=\frac{20}{-11}\)
=>x=60/-11; y=120/-11; z=160/-11
x : y : z = 3 : 4 : 5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Thế vào đẳng thức , ta có :
\(5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(5.25k^2-3.9k^2-2.16k^2=594\)
\(125k^2-27k^2-32k^2=594\)
\(k^2.\left(125-27-32\right)=594\)
\(66k^2=594\)
\(k^2=9\)
\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3k=9\\y=4k=12\\z=5k=15\end{cases}}\)
\(k=-3\Rightarrow\hept{\begin{cases}x=3k=-9\\y=4k=-12\\z=5k=-15\end{cases}}\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2=594\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\hept{\begin{cases}\frac{x^2}{3^2}=9\Rightarrow x=\sqrt{9.3^2}=9;x=-9\\\frac{y^2}{4^2}=9\Rightarrow y=\sqrt{9.4^2}=12;y=-12\\\frac{z^2}{5^2}=9\Rightarrow z=\sqrt{9.5^2}=15;z=-15\end{cases}}\)
Vậy \(x=9;y=12;z=15\)hoặc \(x=-9;y=-12;z=-15\)
Ta có: x/3=y/4=z/5.......
2*x^2/2*3^2+2*y^2/2*4^2-3*z^2=-100/-25=4
x/3=4 suy ra x=12
y/4=4 ....y=16
z/5.......z=20
Ta co : x:y:z=3:4:5
Hay : x/3=y/4=z/5
=>2x^2/18=2y^2/32=3z^2/75 và 2x^2+2y^2-3z^2=-100
Áp dụng tính chất dãy tỉ số bằng nhau :
2x^2/18=2y^2/32=3z^2/75=2x^2+2y^2-3z^2/18+32-75=-100/-25=4
Suy ra : 2x^2/18=4=>2x^2=72=>x^2=36=>x=+6
2y^2/32=4=>2y^2=128=>y^2=64=>y=+8
3z^2/75=4=>3z^2=300=>z^2=100=>z=+10
k nha , k hiu ns mk