K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64};x^2+2y^2+3z^2\)\(=-650\)

<=>\(\frac{x^3}{2^3}=\frac{y^3}{3^3}=\frac{z^3}{4^3}\)

<=>\(\frac{x^2}{2^2}=\frac{2y^2}{2.3^2}=\frac{3z^2}{3.4^2}\)

=>\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{-650}{-26}=25\)

=>\(\hept{\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{4}=25\end{cases}}\)=>\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)

vậy\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)

20 tháng 12 2018

sao tớ thấy nó cứ sai sai thế nào í...

4 tháng 10 2019

a) Vì \(3x=\frac{2}{3}y=\frac{4}{5}z\)

\(\Rightarrow3x:12=\frac{2}{3}y:12=\frac{4}{5}z:12\)

\(\Rightarrow\frac{x}{4}=\frac{y}{18}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{4}=\frac{y}{18}=\frac{z}{15}=\frac{x-y-z}{4-18-15}=\frac{10}{-29}=\frac{-10}{29}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-10}{29}.4=\frac{-40}{29}\\y=\frac{-10}{29}.18=\frac{-180}{29}\\z=\frac{-10}{29}.15=\frac{-150}{29}\end{cases}}\)

Vậy ...

b) Ta có; \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)và \(x^2+2y^2-3z^2=-650\left(1\right)\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\left(2\right)}\)

Thay (2) vào (1) ta được:

\(\left(2k\right)^2+2.\left(3k\right)^2-3.\left(4k\right)^2=-650\)

\(\Leftrightarrow4k^2+18k^2-48k^2=-650\)

\(\Leftrightarrow-26k^2=-650\)

\(\Leftrightarrow k^2=25\)

\(\Leftrightarrow k=\pm5\)

TH1: Thay k=5 vào (2) ta được:

\(\hept{\begin{cases}x=2.5=10\\y=3.5=15\\z=4.5=20\end{cases}}\)

TH2: Thay k=-5 vào (2) ta được:

\(\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\\z=-5.4=-20\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left\{\left(10;15;20\right);\left(-10;-15;-20\right)\right\}\)

a: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

=>\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

Đặt \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=k\)

=>x=k; y=2k; z=3k

\(x^2+y^2+z^2=14\)

=>\(k^2+4k^2+9k^2=14\)

=>\(14k^2=14\)

=>\(k^2=1\)

=>k=1 hoặc k=-1

TH1: k=1

=>\(x=k=1;y=2k=2\cdot1=2;z=3k=3\cdot1=3\)

TH2: k=-1

=>\(x=k=-1;y=2k=2\cdot\left(-1\right)=-2;z=3k=3\cdot\left(-1\right)=-3\)

b: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)

=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{3}\right)^3=\left(\dfrac{z}{4}\right)^3\)

=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

=>x=2k; y=3k; z=4k

\(x^2+2y^2-3z^2=-650\)

=>\(\left(2k\right)^2+2\cdot\left(3k\right)^2-3\cdot\left(4k\right)^2=-650\)

=>\(4k^2+18k^2-3\cdot16k^2=-650\)

=>\(-26\cdot k^2=-650\)

=>\(k^2=25\)

=>\(\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)

TH1: k=5

=>\(x=2\cdot5=10;y=3\cdot5=15;z=4\cdot5=20\)

TH2: k=-5

=>\(x=2\cdot\left(-5\right)=-10;y=3\cdot\left(-5\right)=-15;z=4\cdot\left(-5\right)=-20\)

5 tháng 12 2023

anh có thể giải thích từng bước đuọc không ạ

13 tháng 11 2016

theo bài ra ta có:

\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)

=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2y^2}{18}=\frac{3z^2}{48}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{-650}{-26}=25\)

=> x2= 100 => x=10

=> y2= 225 => y = 15

=> z2= 400 => z= 20

vậy x = 10, y= 15, z= 20

18 tháng 8 2017

mũ 2 là phải đưa về 2 trường hợp chứ

9 tháng 11 2017

Ta có:

\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}=\dfrac{x}{\sqrt[3]{8}}=\dfrac{y}{\sqrt[3]{27}}=\dfrac{z}{\sqrt[3]{64}}=\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(x^2+2y^2-3z^2=-650\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2}{2^2}=\dfrac{2y^2}{2.3^2}=\dfrac{3z^2}{3.4^2}=\dfrac{x^2+2y^2-3y^2}{4+18-48}=\dfrac{-650}{-26}=25\)

\(\dfrac{x}{2}=25\Rightarrow x=25.2=50\)

\(\dfrac{y}{3}=25\Rightarrow y=25.3=75\)

\(\dfrac{z}{4}=25\Rightarrow z=25.4=100\)

Vậy \(x=50;y=75;z=100\)

14 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)

Do đó: x=5; y=5; z=17

14 tháng 10 2021

\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)

17 tháng 9 2021

\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\) và \(x^2+2y^2-3z^2=650\)

\(\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{3}\right)^3=\left(\frac{z}{4}\right)^3\)\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

\(\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}\)

Áp dụng tính chất của dãy tỷ số bằng nhau

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{650}{-26}=-25\)

\(\Rightarrow\frac{x^2}{4}=-25\Rightarrow x^2=-100\Rightarrow x\in\varnothing\)

\(\Rightarrow\frac{y^2}{9}=-25\Rightarrow y^2=-225\Rightarrow y\in\varnothing\)

\(\Rightarrow\frac{z^2}{16}=-25\Rightarrow z^2=-400\Rightarrow z\in\varnothing\)

Vậy không có \(\left(x;y;z\right)\)thoả mãn