Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-2,5\right)\text{ : }1\frac{1}{2}=x\text{ : }2\)
\(\left(x-2,5\right)\text{ : }\frac{3}{2}=x\text{ : }2\)
\(\left(x-2,5\right)\text{ : }\frac{3}{2}\cdot2=x\)
\(\left(x-2,5\right)\text{ : }3=x\)
\(\frac{x}{3}-\frac{2,5}{3}-x=0\)
\(\frac{-2x}{3}-\frac{2,5}{3}=0\)
\(\frac{-2x-2,5}{3}=0\)
\(\Rightarrow\text{ }-2x-2,5=0\)
\(-2x=2,5\)
\(x=\frac{-2,5}{2}\)
1, \(x\div y\div z=3\div8\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{x}{3}=\frac{y}{8}=\frac{z}{10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot8=16\\z=2\cdot5=10\end{cases}}\)
vậy_
các phần sau tương tự
1, \(x:y:z=3:8:5;3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\\\frac{y}{8}=2\Rightarrow y=16\\\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\end{cases}}\)
Vậy....
2, \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3};4x-3y-2z=36\)
\(\Rightarrow\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=\frac{-36}{8}=\frac{-9}{4}\)
Làm tương tự để tìm x;y;z
3, \(x:y:z=3:5:\left(-2\right);5x-y+3z=124\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{\left(-2\right)}\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{15}=31\Rightarrow5x=465\Rightarrow x=93\\\frac{y}{5}=31\Rightarrow y=155\\\frac{3z}{-6}=31\Rightarrow3z=-186\Rightarrow z=-62\end{cases}}\)
Vậy .....
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5\cdot3-4+3\cdot\left(-2\right)}=\dfrac{-16}{5}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-48}{5}\\y=\dfrac{-64}{5}\\z=\dfrac{32}{5}\end{matrix}\right.\)
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)