Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: 3. (x2 + y2 + z2) = 2,25
(x+y+z)2 = 2,25
=> 3. (x2 + y2 + z2) = (x+y+z)2
=>3x2 + 3y2 + 3z2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
=> (x2 - 2xy + y2 ) + (y2 - 2yz + z2) + (z2 - 2xz + x2) = 0
=> (x-y) 2 + (y - z)2 + (z-x)2 = 0
=> x - y = y - z = z - x = 0
=> x = y = z => x = y = z = 1,5/3 = 0,5
ta có:
(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
=>1,52=0,75+2.(xy+xz+yz)
=>xy+xz+yz=0,75
=>xy+xz+yz=x2+y2+z2
=>2xy+2xz+2yz=2x2+2y2+2z2
<=>2x2+2y2+2z2-2xy-2xz-2yz=0
<=>x2-2xy+y2+x2-2xz+z2+y2-2yz+z2=0
<=>(x-y)2+(x-z)2+(y-z)2=0
<=>x-y=0 và x-z=0 và y-z=0
<=>x=y=z
=> x+y+z=1,5 hay x+x+x=1,5
<=>3x=1,5
<=>x=0,5
Vậy x=y=z=0,5
ta có:
(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
=>1,52=0,75+2.(xy+xz+yz)
=>xy+xz+yz=0,75
=>xy+xz+yz=x2+y2+z2
=>2xy+2xz+2yz=2x2+2y2+2z2
<=>2x2+2y2+2z2-2xy-2xz-2yz=0
<=>x2-2xy+y2+x2-2xz+z2+y2-2yz+z2=0
<=>(x-y)2+(x-z)2+(y-z)2=0
<=>x-y=0 và x-z=0 và y-z=0
<=>x=y=z
=> x+y+z=1,5 hay x+x+x=1,5
<=>3x=1,5
<=>x=0,5
Vậy x=y=z=0,5
Ta có \(\hept{\begin{cases}x+y+z=1,5\left(1\right)\\x^2+y^2+z^2=0,75\left(2\right)\end{cases}}\)
Lấy \(\left(2\right)-\left(1\right)\)có \(x^2+y^2+z^2-x-y-z=-0,75\)
\(\Leftrightarrow\left(x^2-x+0,25\right)+\left(y^2-y+0,25\right)+\left(z^2-z+0,25\right)=0\)
\(\Leftrightarrow\left(x^2-2.x.0,5+0,25\right)+\left(y^2-2.y.0,5+0,25\right)+\left(z^2-2.z.0,5+0,25\right)=0\)
\(\Leftrightarrow\left(x-0,5\right)^2+\left(y-0,5\right)^2+\left(z-0,5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-0,5\right)^2=0\\\left(y-0,5\right)^2=0\\\left(z-0,5\right)^2=0\end{cases}\Leftrightarrow x=y=z=0,5}\)
Vậy \(x=y=z=0,5\)
\(x^2+y^2+z^2-x-y-z+0,75=0\)
\(\Leftrightarrow x^2+y^2+z^2-x-y-z+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)+\left(z^2-z+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\left(z-\frac{1}{2}\right)^2=0\)
Dễ thấy: \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\left(z-\frac{1}{2}\right)^2\ge0\)
Xảy ra khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\\z-\frac{1}{2}=0\end{cases}}\)\(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\\z-\frac{1}{2}=0\end{cases}}\)
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)
\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)
\(\Rightarrow\frac{x^2}{2}-\frac{x^2}{5}+\frac{y^2}{3}-\frac{y^2}{5}+\frac{z^2}{4}-\frac{z^2}{5}=0\)
\(\Rightarrow\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\Rightarrow x=y=z=0\)
a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)
\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)