K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{46}{46}=1\)

Do đó: x=10; y=15; z=21

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)

25 tháng 12 2018

a) Theo đề, ta có:

    2.x = 3.y = 4.z

=> 2.x/12 = 3.y/12 = 4.z/12

=> x/6 = y/4 = z/3

mà 2.x  + 3.y - 5.z = -1,8

Áp dụng tính chất dãy tỉ số bằng nhau:

x/6 = y/4 = z/3 = 2.x + 3.y - 5.z / 2.6 + 2.4 + 2.3 = -1,8/26 = a

=> x=a.6=b

=> y=a.4=c

=> z=a.3=d

Bn tính ra nhé, thay vào a,b,c,d

Tk cho mk nhé ae!!!!!!!

25 tháng 12 2018

b) Theo đề, ta có:

2/3.x = 3/4.y = 5/6 .z

=>x/3/2 = y/4/3 = z/6/5

mà 2.y + x + z = -39

Áp dụng tính chất dãy tỉ số bằng nhau:

x/3/2 = y/4/3 = z/6/5 = 2.y + x + z2.4/3 + 3/2 +6/5  =-39/161/30=a

=>x = a.3/2 = b

=>y = a.4/3 = c

=>z = a.6/5 = d

Thay vào a,b,c,d dùm mk, mk ko có máy tính tay nên ko tính đc

Tk cho mk nhé ae!!!!!!!!!!!

theo đề ta có :

\(\frac{x}{2}=\frac{y}{5}và\frac{y}{3}=\frac{z}{4}vàx+y+z=82\)

=>\(\frac{x}{6}=\frac{y}{15}=\frac{z}{20}vax+y+z=82\)

Áp dụng tính chất của dãy tỉ số = nhau t có :

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{20}=\frac{x+y+z}{6+15+20}=\frac{82}{41}=2\)

\(=>\frac{x}{6}=2=>x=12\)

\(\frac{y}{15}=2=>y=30\)

\(\frac{z}{20}=2=>y=40\)

7 tháng 12 2015

1,x/7=y/3 va x-24=y

=>x/7=y/3 va x-y=24

adtcdts=n: 

x/7=y/3=x-y/7-3=24/4=6

Suy ra :x/7=6=>x=6.742

y/3=6=>y=3.6=18

2,Adtcdts=n:

x/5=y/7=z/2=y-x/7-5=48/2=24

suy ra : x/5=24=>x=120

y/7=24=>y=168

z/2=24=>z=48

15 tháng 10 2017

làm giúp mk bài này nhá                                                                                                              0+1+2+...+2017  có bao nhiêu số hạng

                                                                                                          

1 tháng 10 2017

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{2x}{10.2}=\frac{3y}{15.3}=\frac{z}{21}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{21}=\frac{2x+3y+z}{20+45+21}=\frac{172}{86}=2\)

\(\frac{x}{10}=2\Rightarrow x=2.10=20\)

\(\frac{y}{15}=2\Rightarrow y=2.15=30\)

\(\frac{z}{21}=2\Rightarrow z=2.21=42\)

Vậy x=20 ; y=30 và z=42

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

1 tháng 10 2019

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

1 tháng 10 2019

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...