Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x, y, z biết 2x + 3y + 4z = -54; x và y tỉ lệ nghịch với 5 và 3; y và z tỉ lệ thuận với 10 và 3.
#)Giải :
Bài 1 :
a) Ta có :
\(\frac{x}{y}=\frac{7}{10}\Leftrightarrow10x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{10}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow8y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{10}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{10}=\frac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x-y+3z}{14-10+48}=\frac{104}{52}=2\hept{\begin{cases}\frac{x}{7}=2\\\frac{y}{10}=2\\\frac{z}{16}=2\end{cases}\Rightarrow\hept{\begin{cases}x=14\\y=20\\z=32\end{cases}}}\)
Vậy x = 14; y = 20; z = 32
a, \(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}\)
Áp dụng t/c
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}=\frac{2x-y+3z}{\frac{2}{3}-\frac{1}{5}+\frac{3}{7}}=\frac{188}{\frac{105}{94}}=210\)
\(\frac{x}{\frac{1}{3}}=210\Rightarrow x=70\)
\(\frac{y}{\frac{1}{5}}=210\Rightarrow y=42\)
\(\frac{z}{\frac{1}{7}}=210\Rightarrow z=30\)
Vì x và z tỉ lệ thuận với 3 và 4 => \(\frac{x}{3}=\frac{y}{4}\)(1)
Vì y và z tỉ lệ thuận với 5 và 7 => \(\frac{y}{5}=\frac{z}{7}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
+) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{36}{62}=\frac{18}{31}\)
=> x = 18/31 .15 = 270/31
y = 18/31.20 = 360/31
z = 18/31.28 = 504/31
x,z tỉ lệ thuận với 3, 4
=> \(\frac{x}{3}=\frac{z}{4}\)(1)
y, z tỉ lệ thuận với 5, 7
=> \(\frac{y}{5}=\frac{z}{7}\)(2)
và 2x + 3y - z = 36 (3)
Từ (1), (2) và (3)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{z}{4}\\\frac{y}{5}=\frac{z}{7}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}\times\frac{1}{7}=\frac{z}{4}\times\frac{1}{7}\\\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{21}=\frac{z}{28}\\\frac{y}{20}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{21}=\frac{y}{20}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{42}=\frac{3y}{60}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{42}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{42+60-28}=\frac{36}{74}=\frac{18}{37}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{18}{37}\cdot21=\frac{378}{37}\\y=\frac{18}{37}\cdot20=\frac{360}{37}\\z=\frac{18}{37}\cdot28=\frac{504}{37}\end{cases}}\)
x.y.z tỉ lệ thuận với 2,3,6
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
\(\Rightarrow\frac{2x}{4}=\frac{3y}{9}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{2x}{4}=\frac{3y}{9}=\frac{z}{6}==\frac{2x-3y-z}{4-9-6}=\frac{1}{-11}\)
\(\Rightarrow x=\frac{-2}{11};y=\frac{-3}{11};z=\frac{-6}{11}\)
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4