Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
mà \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y^2-z=2^2-\left(-3\right)=7\\y=2\\z=-3\end{cases}}\)
\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
Do \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}\left[x-2^2+\left(-3\right)\right]^2=0\\y=2\\z=-3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}}\)
Vậy ...
Lời giải:
1. Ta thấy:
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$
$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$
2.
Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>
Ta có
\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)
Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)
\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)
Ta thấy \(\left(x+y-z\right)^2\ge0\); \(\left(x-y+2\right)^2\ge0\);\(\left(x+4\right)^2\ge0\)với mọi x,y,z
Suy ra \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2\ge0\)với mọi x,y,z
Mặt khác \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2=0\)
Nên \(\hept{\begin{cases}x+y-z=0\\x-y+2=0\\x+4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=z\\x+2=y\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x+y=z\\y=-2\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}z=-6\\y=-2\\x=-4\end{cases}}}\)
Vậy.....
có: \(\hept{\begin{cases}\left(x-y-z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\Rightarrow\left(x-y-z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y-z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+z\\y=2\\z=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\\z=-3\end{cases}}\)
\(\left(x-1\right)^2+\left(3x-y-3\right)^2+\left(y+z\right)^4=0\)
\(\left(x-1\right)^2\ge0\)
\(\left(3x-y-3\right)^2\ge0\)
\(\left(y+z\right)^4\ge0\)
\(\left(x-1\right)^2+\left(3x-y-3\right)^2+\left(y+z\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2=0;\left(3x-y-3\right)^2=0;\left(y+z\right)^4=0\)
- \(x-1=0\Rightarrow x=1\)
- \(3x-3-y=0\Rightarrow3\times1-3=y\Rightarrow y=0\)
- \(y+z=0\Rightarrow0+z=0\Rightarrow z=0\)
Vậy \(x=1;y=0;z=0\)
Chúc bạn học tốt ^^
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\Leftrightarrow x=z=\dfrac{5}{3}\)
\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Từ đề suy ra :
\(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y=\pm1\end{matrix}\right.\)
Câu 1: |x + 2| \(\le\)1 => |x + 2| = 0
=> x + 2 = 0
x = 0 - 2
x = -2
Câu 3: |x| + |y| + |z| = 0
Vì giá trị tuyệt đối phải là số lớn hơn hoặc bằng 0
=> |x| = 0, |y| = 0, |z| = 0
=> x = 0, y = 0, z = 0
Bài 1 : Tính nhanh
a) 16.(38−2)−38(16−1)16.(38−2)−38(16−1)
b) (−41).(59+2)+59(41−2)(−41).(59+2)+59(41−2)
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3