Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(x+y+z=\frac{1}{2}\Leftrightarrow2x+2y+2z=1\)
Mặt khác: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2x+2y+2z}{xyz}=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) ( vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\) )
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{\frac{1}{2}}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{x+y+z}-\frac{1}{z}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y\right)\left(zx+yz+z^2\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^{2021}+y^{2021}=0\\y^{2017}+z^{2017}=0\\z^{2019}+x^{2019}=0\end{matrix}\right.\)\(\Leftrightarrow Q=0\)
Vậy...
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)
TH1: x+y=0
=> x=-y => P=0
TH2: xy=-z.(x+y+z)
\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)
\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)
Sửa đề cho bạn luôn nhé!
\(\text{Ta có:}\)
\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\text{Nhân cả hai vế của đẳng thức trên với}\) \(a^2+b^2+c^2\ne0\) \((do\) \(a,b,c\ne0\)),\(\text{ ta được:}\)
\(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\) \(\left(1\right)\)
\(\text{Khi đó, ta khai triển vế phải của}\) \(\left(1\right)\) \(\text{thì} \) \(\left(1\right)\) \(\text{trở thành:}\)
\(VP=x^2+\dfrac{a^2y^2}{b^2}+\dfrac{a^2z^2}{c^2}+\dfrac{b^2x^2}{a^2}+y^2+\dfrac{b^2z^2}{c^2}+\dfrac{c^2x^2}{a^2}+\dfrac{c^2y^2}{b^2}+z^2\)
\(\text{So sánh vế trái của đẳng thức}\) \(\left(1\right)\), \(\text{ta dễ dàng nhận thấy cả hai vế có cùng đa thức}\) \(x^2+y^2+z^2\) \(\text{nên ta có thể viết lại }\) \(\left(1\right)\) \(\text{như sau:}\)
\(\dfrac{a^2y^2}{b^2}+\dfrac{a^2z^2}{c^2}+\dfrac{b^2x^2}{a^2}+\dfrac{b^2z^2}{c^2}+\dfrac{c^2x^2}{a^2}+\dfrac{c^2y^2}{b^2}=0\)
\(\Leftrightarrow\) \(\left(\dfrac{b^2x^2}{a^2}+\dfrac{c^2x^2}{a^2}\right)+\left(\dfrac{c^2y^2}{b^2}+\dfrac{a^2y^2}{b^2}\right)+\left(\dfrac{a^2z^2}{c^2}+\dfrac{b^2z^2}{c^2}\right)=0\)
\(\Leftrightarrow\) \(\dfrac{x^2}{a^2}\left(b^2+c^2\right)+\dfrac{y^2}{b^2}\left(c^2+a^2\right)+\dfrac{z^2}{c^2}\left(a^2+b^2\right)=0\) \(\left(2\right)\)
\(\text{Mặt khác, ta cũng có }\) \(a,b,c\ne0\) (gt) nên \(a^2,b^2,c^2\ne0;\) \(a^2+b^2\ne0;\) \(b^2+c^2\ne0\) và \(c^2+a^2\ne0\) \(\left(3\right)\)
\(Từ\) \(\left(2\right)\) \(và\) \(\left(3\right)\),\(\text{ ta dễ dàng suy ra được }\) \(x=y=z=0\)
\(Vậy \) \(x^{2019}+y^{2019}+z^{2019}=0\) \((đpcm)\)
Đk: $x\geq \frac{1}{2}$
Pt $\Leftrightarrow 4x^2+3x-7=4(\sqrt{x^3+3x^2}-2)+2(\sqrt{2x-1}-1)$
$\Leftrightarrow +4\frac{(x-1)(x+2)^2}{\sqrt{x^3+3x^2}+2}+4\frac{x-1}{\sqrt{2x-1}+1}-(x-1)(4x+7)=0$
$\Leftrightarrow (x-1)[\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-(4x+7)]=0$
$\Leftrightarrow x=1\vee \frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7=0$ $(*)$
Xét hàm số $f(x)=\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7,x\in [\frac{1}{2};+\infty )$ thì $f(x)>0,\forall x\in [\frac{1}{2};+\infty )$
$\Rightarrow $ Pt $(*)$ vô nghiệm
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x+y+2019}{z}=\frac{y+z-2020}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
\(=\frac{x+y+2019+y+z-2020+z+x+1}{z+x+y}=2\)
\(\Rightarrow x+y+z=1\)
\(\Rightarrow\hept{\begin{cases}x+y=1-z\\y+z=1-x\\x+z=1-y\end{cases}}\)
Thay vào đầu bài:
\(\frac{1-z+2019}{z}=\frac{1-x-2020}{x}=\frac{1-y+1}{y}\)
\(\Leftrightarrow\frac{2020-z}{z}=\frac{-2019-x}{x}=\frac{2-y}{y}\)
\(\Leftrightarrow\frac{2020}{z}=\frac{-2019}{x}=\frac{2}{y}=\frac{2020-2019+2}{x+y+z}=3\)(Theo t/c dãy tỉ số bằng nhau)
\(\Rightarrow\hept{\begin{cases}z=\frac{2020}{3}\\x=\frac{-2019}{3}\\y=\frac{2}{3}\end{cases}}\)
ĐK: x , y, z, x+y+z khác 0
Áp dụng dãy tỉ số bằng nhau: ( kiến thức trong SGK lớp 7 em tìm hiểu lại nhé! )
\(\frac{x+y+2019}{z}=\frac{y+z-2020}{x}=\frac{z+x+1}{y}=\frac{x+y+2019+y+z-2020+z+x+1}{x+y+z}\)
\(=\frac{2x+2y+2z}{x+y+z}=2\)
=> \(\frac{2}{x+y+z}=2\Leftrightarrow x+y+z=1\) (1)
\(\frac{x+y+2019}{z}=2\Leftrightarrow x+y+2019=2z\)(2)
\(\frac{y+z-2020}{x}=2\Leftrightarrow y+z-2020=2x\) (3)
\(\frac{z+x+1}{y}=2\Leftrightarrow z+x+1=2y\) (4)
Từ (1) <=> x + y = 1 - z ; y +z =1 - x ; z + x = 1 -y . Lần lượt thế vào (2) ; (3) ; (4) để tìm x, y, z