Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 5x=2y ; 2x=3z <=> x/10=y/4=z/15
Đặt k ta có : \(\frac{x}{10}=\frac{y}{4}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}\frac{x}{10}=k\Rightarrow x=10k\\\frac{y}{4}=k\Rightarrow y=4k\\\frac{z}{15}=k\Rightarrow z=15k\end{cases}}\)
x.y=10k.4k=40.k2=90
=> k2=2,25
=> k=1,5
x=10k=10.1,5=15
y=4k=4.1,5=6
z=15k=15.1,5=22,5
Vậy ...
b)Ta có:5x=2y => \(\frac{x}{2}\)= \(\frac{y}{5}\)<=> \(\frac{x}{6}\)= \(\frac{y}{15}\)(1)
2x=3z => \(\frac{x}{3}\)= \(\frac{z}{2}\)<=> \(\frac{x}{6}\)= \(\frac{z}{4}\)(2)
Từ (1) và (2) suy ra: \(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{z}{4}\)
Đặt \(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{z}{4}\)= k
Suy ra:x=6k,y=15k,z=4k
Ta có: xy=6k.15k=90k2=90
=> k2=1
=> k=1 hoặc k=-1
Nếu k=1 thì x=6,y=15,z=4
Nếu k=-1 thì x=-6,y=-15,z=-4
Vậy.....
Chúc các bạn hk tốt!
TH1: x-2y=5
2x=3y=5z=> 2x/30=3y/30=5z/30
=> x/15=y/10=z/6
Apa dụng dãu tỉ số bằng nhau ta có:
x/15=y/10=z/6->x/15=2y/20=x-2y/15-20=5/-5=-1
=> x=-15
y=-10
TH2: x-2y=-5
bn lm tương tự câu trên nha!
HOK TOT!
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
a: Ta có: 2x=3y=5z
=>2x/30=3y/30=5z/30
=>x/15=y/10=z/6
Trường hợp 1: x-2y=5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{5}{-5}=-1\)
Do đó: x=-15; y=-10; z=-6
Trường hợp 2: x-2y=-5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-2y}{15-2\cdot10}=\dfrac{-5}{-5}=1\)
Do đó: x=15; y=10; z=6
b: Ta có: 5x=2y
nên x/2=y/5
=>x/6=y/15
Ta có: 2x=3z
nên x/3=z/2
=>x/6=z/4
=>x/6=y/15=z/4
Đặt x/6=y/15=z/4=90
=>x=6k; y=15k; z=4k
Ta có; xy=90
\(\Leftrightarrow90k^2=90\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
=>x=6; y=15; z=4
TRường hợp 2: k=-1
=>x=-6; y=-15; z=-4