Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6x-y+3xy=15\)
\(\Leftrightarrow\left(6x+3xy\right)-y=15\)
\(\Leftrightarrow3x\left(2+y\right)-y=13+2\)
\(\Leftrightarrow3x\left(2+y\right)-y-2=13\)
\(\Leftrightarrow3x\left(2+y\right)-\left(y+2\right)=13\)
\(\Leftrightarrow\left(2+y\right)\left(3x-1\right)=13\)
\(\Rightarrow\left(2+y\right);\left(3x-1\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Xét từng trường hợp :
TH1 : \(\hept{\begin{cases}2+y=1\\3x-1=13\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=\frac{14}{3}\end{cases}}\)
TH2:\(\hept{\begin{cases}2+y=13\\3x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=11\\x=\frac{2}{3}\end{cases}}}\)
TH3:\(\hept{\begin{cases}2+y=-1\\3x-1=-13\end{cases}\Leftrightarrow\hept{\begin{cases}y=-3\\x=-4\end{cases}}}\)
TH4:\(\hept{\begin{cases}2+y=-13\\3x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-15\\x=0\end{cases}}\)
Vậy................
/hok chắc/
~ học tốt~
3xy - 6x + y + 3 = 0
=> 3xy + y - 6x = -3
=> y(3x + 1) = 6x - 3
=> 6x - 3 chia hết cho 3x + 1
Mà 3x + 1 chia hết cho 3x + 1 => 6x + 2 chia hết cho 3x + 1
Do đó 6x + 2 - 6x + 3 chia hết cho 3x + 1
=> 5 chia hết cho 3x + 1
=> 3x + 1 thuộc {1; -1; 5; -5}
=> 3x thuộc {0; -2; 4; -6}
=> x thuộc {0; -2} (Vì x thuộc Z)
<=>(3x+1)y-6x+3=0
=>(3x+1)y-6x-0+3=0
=>3x+1=0
=>3x=-1
=>3(y-2)=0
=>3y=3.2( rut gon 3)
=>y=2
câu a :
a, suy ra x-7 và x+3 khác dấu
mà x-7 < x+3
suy ra x-7 <0 ; x+3 > 0
suy ra x <7 ; x > -3
suy ra 7 > x > -3
vậy x = -2 ; -1 ; ... ; 6
nha rồi tui giải câu b cho
\(3x\left(2+y\right)-\left(y+2\right)=13\Leftrightarrow\left(3x-1\right)\left(y+2\right)=13\)
\(\Rightarrow3x-1;y+2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
3x-1 | 1 | -1 | 13 | -13 |
y+2 | 13 | -13 | 1 | -1 |
x | loại | 0 | loại | -4 |
y | loại | -15 | loại | -3 |
Có : a)
xy -x + 2y = 15
x. ( y-1 ) + 2y = 15
x. ( y-1 ) + 2 . (y-1+1) = 15
x. (y-1) + 2. ( y-1) +2 = 15
x . ( y-1) + 2 . ( y-1) = 13
( y-1). ( x+2) = 13
vì x\(\in\)Z => x+2 \(\in\)Z
\(y\in Z\) => y-1 \(\in\)Z
nên ( y-1) ; ( x+2) \(\inƯ\left(13\right)=[\pm1;\pm13]\)
ta có bảng sau
y-1 | 1 | -1 | 13 | -13 |
y | 2 | 0 | 14 | -12 |
x+2 | 13 | -13 | 1 | -1 |
x | 11 | -15 | -1 | -3 |
TM | TM | TM | TM |
vậy (x;y) \(\in\)\([\left(11;2\right);\left(-15;0\right);\left(-1;14\right);\left(-3;-12\right)]\)
b)
x+y=xy
<=> x(y-1)=y
<=> x= y/(y-1)= 1+1/(y-1)
vì x là số nguyên nên \(\frac{1}{y-1}\) là số nguyên
=> 1 chia hết cho y-1
=> y-1 là ước của 1
=> y-1=1 hoặc y-1=-1
=> y=2oặc y=0
với y=2 => x=2
y=0=> x=0
Ta có :
6x - y + 3xy = 15
=> (6x + 3xy) - y = 15
=> 3x(2 + y) - y = 15
=> 3x(2+y) - y - 2 = 13
=> 3x(2+y) -(2+y) = 13
=> (3x-1)(2+y) = 13
=> 3x -1 ; 2+y thuộc Ư ( 13)
Tự xét ước nha bạn
6x-y+3xy=15
3x(2+y)-y=15
3x(2+y)-(2+y)=13
(3x-1)(2+y)=13
Vì x;y là số nguyên => 3x-1;2+y là số nguyên
=> \(3x-1;2+y\inƯ\left(13\right)\)
Ta có bảng:
Vậy.....................................................................................................................................