K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

\(=\frac{14x}{7}\)=\(\frac{1}{y}\)

\(\Leftrightarrow\)2x = \(\frac{1}{y}\)

\(\Rightarrow\)xy=2

boi x,y \(\varepsilon\)z

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2\\y=1\end{cases}}\\\hept{\begin{cases}x=-2\\y=-1\end{cases}}\end{cases}\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=2\end{cases}}\\\hept{\begin{cases}x=-1\\y=-2\end{cases}}\end{cases}}}\)suy ra TH1 \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

TH2\(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)

TH3\(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

TH4\(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)

ms học toán có gì sai jup mik chua nha

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2-2x-3y+1}{5+7-6x}=\frac{0}{12-6x}=0\)

\(\left[\begin{array}{nghiempt}2x+1=0\\3y-2=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=-1\\3y=2\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\y=\frac{2}{3}\end{array}\right.\)

23 tháng 10 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

+) Xét \(2x+3y-1=0\Rightarrow2x+1=0=3y-2=0\)

\(\Rightarrow x=\frac{-1}{2},y=\frac{2}{3}\)

+) Xét \(2x+3y-1\ne0\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Ta có: \(2x+1=3y-2\)

\(\Rightarrow2.2+1=3y-2\)

\(\Rightarrow5=3y-2\)

\(\Rightarrow3y=7\)

\(\Rightarrow y=\frac{7}{3}\)

Vậy bộ số \(\left(x,y\right)\)\(\left(\frac{-1}{2},\frac{2}{3}\right);\left(2,\frac{7}{3}\right)\)

 

 

14 tháng 9 2016

Các bạn xem mk trả lời thế này đúng ko nhé :

Áp dụng tính chất của dãy tỉ số bằng nhau ta có 2 cách

C1 : 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

6x = 12 \(\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)

Vậy x = 2 , y = 3

C2 : 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7-6x}=0\)

\(2x+1=0\Rightarrow x=\frac{-1}{2}\)

\(3y-2=0\Rightarrow y=\frac{2}{3}\)

Vay \(x=\frac{-1}{2};y=\frac{2}{3}\)

Kết luận : \(x=\frac{-1}{2};y=\frac{2}{3}\)

                \(x=2;y=3\)

 

24 tháng 4 2020

Bạn giỏi đấy

6 tháng 9 2019

https://h.vn//hoi-dap/question/85675.html

câu số 2 ý

22 tháng 10 2018

Mình chỉ hướng dẫn giải thôi nhá chứ nhiều bài quá

a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)

Thay x.y=315 => 5k.7k=315 <=> 35k2=315 => k2=9 => k=3

x=5.3=15 ; y=7.3=21

b) 5x=9y<=> \(\frac{x}{9}=\frac{y}{5}\)

Theo TCDTSBN ta có : \(\frac{x}{9}=\frac{y}{5}=\frac{2x+3y}{2.9+3.5}=\frac{-33}{33}=-1\)

x/9=-1=>x=-9 ; y/5=-1=>y=-5

các bài còn lại tương tự b 

20 tháng 12 2018

1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)

\(=-y\)

\(\Rightarrow xy=-2016y;x+y=-2015y;\)

\(x-y=-2017y\)

\(\Rightarrow-2016y-xy=0\)

\(\Rightarrow y\left(-2016-x\right)=0\)

\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)

\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)

\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)

Vậy +) x=y=0

       +) x=-2016;y=1

20 tháng 12 2018

2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)

Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)

             \(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)

            \(z+0,5=2.1,25=2,5\Rightarrow z=2\)

Vậy x=2;y=3;z=2.

18 tháng 3 2018

Áp dụng BĐT giá trị tuyệt đối ta có:

\(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)                           (1)       

Mặt khác:\(\left(y-5\right)^2\ge0\Rightarrow2\left(y-5\right)^2\ge0\Rightarrow2\left(y-5\right)^2+2\ge2\)

\(\Rightarrow\frac{8}{2\left(y-5\right)^2+2}\le\frac{8}{2}=4\)                                                            (2)

Từ (1) và (2) \(\Rightarrow\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\) khi \(\hept{\begin{cases}y=5\\\left(2x+3\right)\left(1-2x\right)\ge0\end{cases}}\)

Với \(\hept{\begin{cases}2x+3\ge0\\1-2x\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-\frac{3}{2}\\x\le\frac{1}{2}\end{cases}}\)\(\Rightarrow-\frac{3}{2}\le x\le\frac{1}{2}\)

Với \(\hept{\begin{cases}2x+3\le0\\1-2x\le0\end{cases}}\)  \(\Rightarrow\hept{\begin{cases}x\le-\frac{3}{2}\\x\ge\frac{1}{2}\end{cases}}\)(loại)

Vậy \(\frac{-3}{2}\le x\le\frac{1}{2};y=5\) thỏa mãn

19 tháng 3 2018

Giải dùm mk câu này vs

\(3|2x+1|+4|2y-1|\le7\). Tìm x, y