K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

                  \(\frac{x^2}{3}+\frac{y^2}{4}+\frac{z^2}{5}=\frac{x^2+y^2+z^2}{6}\)

\(\Leftrightarrow\)\(\frac{x^2}{3}+\frac{y^2}{4}+\frac{z^2}{5}-\frac{x^2}{6}-\frac{y^2}{6}-\frac{z^2}{6}=0\)

\(\Leftrightarrow\)\(\frac{1}{6}x^2+\frac{1}{12}y^2+\frac{1}{30}z^2=0\)

\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)

\(\Leftrightarrow\)\(x=y=z=0\)

21 tháng 10 2018

\(x+y+z=6\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2=36\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2xy+2yz+2zx=36\)

\(\Leftrightarrow\)\(2xy+2yz+2zx=24\)

\(\Leftrightarrow\)\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)

Mà \(x+y+z=6\)\(\Rightarrow\)\(x=y=z=\frac{6}{3}=2\)

Vậy \(x=y=z=2\)

Chúc bạn học tốt ~ 

21 tháng 10 2018

ĐK: x + y + z = 6; \(x^2+y^2+z^2=12\)

Áp dụng BĐT Bunhiacopxki cho hai bộ số (1;1;1) và (x;y;z).Ta có:

\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

Thay \(x+y+z=6\) và ta có:

\(3\left(x^2+y^2+z^2\right)\ge36\Leftrightarrow x^2+y^2+z^2\ge12\) (tmđk)

Dấu "=" xảy ra khi \(x=y=z=\frac{6}{3}=2\) (*)

Từ (*) suy ra  x=y=z=2

24 tháng 10 2020

Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Dấu "=" xảy ra khi: x = y = z

Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)

\(\Rightarrow x=y=z=2\)

Vậy x = y = z = 2

24 tháng 10 2020

tớ  chưa học bđt

4 tháng 8 2021

còn cách làm khác không ạ?