K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

Có \(xy=\frac{x}{y}\Rightarrow y=\frac{1}{y}\Rightarrow y^2=1\Rightarrow y=\pm1\)

Với \(y=1\Rightarrow x+1=x\)(vô lý)

Với \(y=-1\Rightarrow x-1=-x\)

\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)

Vậy \(y=-1;x=\frac{1}{2}\)

Tham khảo nhé~

15 tháng 11 2018

Từ\(x\cdot y=\frac{x}{y}\)\(\Rightarrow y^2=\frac{x}{x}=1\)\(\Rightarrow y=1,y=-1\)

Mặt khác:Từ\(x-y=x\cdot y\Rightarrow\frac{x-y}{xy}=1\Rightarrow\frac{1}{y}-\frac{1}{x}=1\)

+)  y=1=>\(1-\frac{1}{x}=1\Rightarrow0=\frac{1}{x}\)(VL)

+)  y=-1=>\(-1-\frac{1}{x}=1\Rightarrow-2=\frac{1}{x}\Rightarrow x=-\frac{1}{2}\)

Vậy.........................

1 tháng 4 2017

<=> x+y+2=xy

<=> y+2=xy-x

<=> y+2=x(y-1)

<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)

Vậy, để x nguyên thì y-1 phải là ước của 3

=> y-1={-3; -1; 1; 3}

=> y={-2; 0; 2; 4}

=> x={0; -2; 4; 2}

Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)

30 tháng 9 2018

Giúp mình với mình đang cần gấp

Nhớ giải chi tiết ra cho mình nhé

ta có :

\(\frac{x}{3}=\frac{y}{6}\Rightarrow\frac{x}{y}=\frac{3}{6}=\frac{1}{2}\)

\(\Rightarrow\frac{x}{y}=\frac{1}{2}\)

Vậy x = 1 ; y = 2.

19 tháng 7 2018

1. \(3^x+3^{x+2}=2430\)

    \(3^x\left(1+3^2\right)=2430\)

    \(3^x.10=2430\)

    \(3^x=243\)

    \(3^x=3^5\)

    \(x=5\)

2. \(2^{x+3}-2^x=224\)

    \(2^x\left(2^3-1\right)=224\)

    \(2^x.7=224\)

    \(2^x=32\)

    \(2^x=2^5\)

    \(x=5\)

19 tháng 7 2018

1. 3^x + 3^x+2 = 2430

3^x.1+3^x.3^2=2430

3^x.1+3^x.9=2430

3^x.(1+9)=2430

3^x.10=2430

3^x=2430:10

3^x=243

3^x=3^5

=> x=5

Vậy x =5

2. 2^x+3  - 2^x =224

2^x.2^3-2^x.1=224

2^x.8-2^x.1=224

2^x.(8-1)=224

2^x.7=224

2^x=224:7

2^x=32

2^x=2^5

=> x=5

Vậy x=5

16 tháng 5 2017

ta có:

\(x+y=x.y\)

\(\Rightarrow y=x.y-x=x.(y-1)\)

\(\Rightarrow x:y=y-1=x+y\)

\(\Rightarrow x=-1\)

\(thay\) \(x+y=x.y\)

\(\Rightarrow y-1=-y\Rightarrow2y=1\Rightarrow y=\dfrac{1}{2}\)

\(\Rightarrow x=-1;y=\dfrac{1}{2}\)

16 tháng 7 2017

\(\dfrac{1}{y}=\dfrac{x}{4}-\dfrac{1}{2}=\dfrac{x-2}{4}=>y.\left(x-2\right)=4\)

Vì x ,y \(\in\) z nên x - 2 \(\in\) z , ta có bảng sau :

x 1 -1 2 -2 4 -4
x-2 4 -4 2 -2 1 -1
y 6 -2 4 0 3 1

5 tháng 5 2018

=> x+y/xy =1/3                 =>3.[(x-3)+3]=(x-3).y            TH1:x-3=1;y-3=9           TH3:x-3= -1;y-3= -9        Vậy{x;y}={4;12};{6;6};{2;-6}

=>(x+y).3=xy                   =>3.(x-3)+9=(x-3).y              =>x=4;y=12(TM)                   =>x=2;y= -6(TM)

=>3x + 3y=xy                  =>9=(x-3)(y-3)                     TH2:x-3=3;y-3=3            TH4:x-3=3;y-3=3

=>3x=xy-3y                    =>x-3;y-3 thuộc Ư(9)            =>x=6;y=6(TM)                    =>x=0;y=0(L)

=>3x=(x-3).y

1 tháng 5 2015

Dùng tính chất tỉ lệ thức: \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{e}{f}\)=\(\frac{a+b+c}{b+d+f}\) ( Có b+d+f \(\ne\)0 )

* Trước tiên ta xét trường hợp x+y+z=0 có:

\(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=0    =>x=y=z=0

* Xét x+y+z=0,tính chất tỉ lệ thức:

x+y+z=\(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=\(\frac{x+y+z}{2x+2y+2z}\)=\(\frac{1}{2}\)

=>x+y+z=\(\frac{1}{2}\) Và 2x=y+z+1=\(\frac{1}{2}\)-x+1=>x=\(\frac{1}{2}\)

                         2y=x+z+1=\(\frac{1}{2}\)-y+1=>y=\(\frac{1}{2}\)

                          z=\(\frac{1}{2}\)-(x+y)=\(\frac{1}{2}\)-1=\(\frac{-1}{2}\)

Vậy có cặp (x,y,z) thỏa mãn:(\(\frac{1}{2}\),\(\frac{1}{2}\),\(\frac{-1}{2}\))