Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ\(x\cdot y=\frac{x}{y}\)\(\Rightarrow y^2=\frac{x}{x}=1\)\(\Rightarrow y=1,y=-1\)
Mặt khác:Từ\(x-y=x\cdot y\Rightarrow\frac{x-y}{xy}=1\Rightarrow\frac{1}{y}-\frac{1}{x}=1\)
+) y=1=>\(1-\frac{1}{x}=1\Rightarrow0=\frac{1}{x}\)(VL)
+) y=-1=>\(-1-\frac{1}{x}=1\Rightarrow-2=\frac{1}{x}\Rightarrow x=-\frac{1}{2}\)
Vậy.........................
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
Giúp mình với mình đang cần gấp
Nhớ giải chi tiết ra cho mình nhé
ta có :
\(\frac{x}{3}=\frac{y}{6}\Rightarrow\frac{x}{y}=\frac{3}{6}=\frac{1}{2}\)
\(\Rightarrow\frac{x}{y}=\frac{1}{2}\)
Vậy x = 1 ; y = 2.
1. \(3^x+3^{x+2}=2430\)
\(3^x\left(1+3^2\right)=2430\)
\(3^x.10=2430\)
\(3^x=243\)
\(3^x=3^5\)
\(x=5\)
2. \(2^{x+3}-2^x=224\)
\(2^x\left(2^3-1\right)=224\)
\(2^x.7=224\)
\(2^x=32\)
\(2^x=2^5\)
\(x=5\)
ta có:
\(x+y=x.y\)
\(\Rightarrow y=x.y-x=x.(y-1)\)
\(\Rightarrow x:y=y-1=x+y\)
\(\Rightarrow x=-1\)
\(thay\) \(x+y=x.y\)
\(\Rightarrow y-1=-y\Rightarrow2y=1\Rightarrow y=\dfrac{1}{2}\)
\(\Rightarrow x=-1;y=\dfrac{1}{2}\)
=> x+y/xy =1/3 =>3.[(x-3)+3]=(x-3).y TH1:x-3=1;y-3=9 TH3:x-3= -1;y-3= -9 Vậy{x;y}={4;12};{6;6};{2;-6}
=>(x+y).3=xy =>3.(x-3)+9=(x-3).y =>x=4;y=12(TM) =>x=2;y= -6(TM)
=>3x + 3y=xy =>9=(x-3)(y-3) TH2:x-3=3;y-3=3 TH4:x-3=3;y-3=3
=>3x=xy-3y =>x-3;y-3 thuộc Ư(9) =>x=6;y=6(TM) =>x=0;y=0(L)
=>3x=(x-3).y
Dùng tính chất tỉ lệ thức: \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{e}{f}\)=\(\frac{a+b+c}{b+d+f}\) ( Có b+d+f \(\ne\)0 )
* Trước tiên ta xét trường hợp x+y+z=0 có:
\(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=0 =>x=y=z=0
* Xét x+y+z=0,tính chất tỉ lệ thức:
x+y+z=\(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=\(\frac{x+y+z}{2x+2y+2z}\)=\(\frac{1}{2}\)
=>x+y+z=\(\frac{1}{2}\) Và 2x=y+z+1=\(\frac{1}{2}\)-x+1=>x=\(\frac{1}{2}\)
2y=x+z+1=\(\frac{1}{2}\)-y+1=>y=\(\frac{1}{2}\)
z=\(\frac{1}{2}\)-(x+y)=\(\frac{1}{2}\)-1=\(\frac{-1}{2}\)
Vậy có cặp (x,y,z) thỏa mãn:(\(\frac{1}{2}\),\(\frac{1}{2}\),\(\frac{-1}{2}\))
Có \(xy=\frac{x}{y}\Rightarrow y=\frac{1}{y}\Rightarrow y^2=1\Rightarrow y=\pm1\)
Với \(y=1\Rightarrow x+1=x\)(vô lý)
Với \(y=-1\Rightarrow x-1=-x\)
\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy \(y=-1;x=\frac{1}{2}\)
Tham khảo nhé~