Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)-2-3+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\Rightarrow z+y+z=\frac{1}{2}\)Ta có:
\(\frac{x}{y+z+1}=\frac{1}{2}\)
\(\Rightarrow2x=y+z+1\)
\(\Rightarrow y+z=2x-1\)
\(\Rightarrow x+\left(2x-1\right)=\frac{1}{2}\)
\(\Rightarrow x+2x-1=\frac{1}{2}\)
\(\Rightarrow3x-1=\frac{1}{2}\)
\(\Rightarrow3x=\frac{1}{2}+1\)
\(\Rightarrow3x=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{2}:3\)
\(\Rightarrow x=\frac{1}{2}\)
y ;z bạn làm tương tự
- Mình nhầm chỗ \(\frac{x}{y+z+1}\)tí sữa thành \(\frac{x}{y+z+2}\)nhá D
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
ai mua , đổi acc bang bang thì nhắn tin vs tui
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{y+x+5}\Rightarrow\frac{1}{x+y+z}=\frac{y+z-2}{x}=\frac{z+x-3}{y}=\frac{x+y+5}{z}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{1}{x+y+z}=\frac{y+z-2}{x}=\frac{z+x-3}{y}=\frac{x+y+5}{z}=\frac{y+z-2+z+x-3+x+y+5}{x+y+z}=2\left(vìx+y+z\ne0\right)\)
\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\left(ĐK:x,y,z\ne0\right)\)
\(\frac{y+z-2}{x}=2\Leftrightarrow2x=y+z-2\Rightarrow3x=x+y+z-2\Rightarrow x=-\frac{1}{2}\)
\(\frac{z+x-3}{y}=2\Rightarrow2y=x+z-3\Rightarrow3y=x+y+z-3\Rightarrow y=-\frac{5}{6}\)
\(\frac{x+y+5}{z}=2\Rightarrow2z=x+y+5\Rightarrow3z=x+z+y+5\Rightarrow z=\frac{11}{6}\)
VẬY \(x=-\frac{1}{2},y=-\frac{5}{6},z=\frac{11}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z-2+z+x-3+x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2};y+z-2=2x;z+y-3=2y;x+y+5=2z\)
\(\Rightarrow\hept{\begin{cases}x+y+z-2=3x\\x+y+z-3=3y\\x+y+z+5=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}-2=3x\\\frac{1}{2}-3=3y\\\frac{1}{2}+5=3z\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{-5}{6}\\z=\frac{11}{6}\end{cases}}}\)