Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: xy-5x+y=17
x(y-5)+y-5=17-5
(y-5)(x+1)=12
=> x+1 ∈ Ư(12)={±1;±2;±3;±3;±6;±12}
Mà x ∈ N nên x ≥ 0 => x+1 ≥ 1
=> x+1 ∈ {1;2;3;4;6;12}
xy-5x+y=17
⇒x(y-5)+(y-5)=12
⇒(y-5)(x+1)=12
Th1: {y−5=1x+1=12{y−5=1x+1=12 =>{y=6x=11{y=6x=11
Th2: {y−5=12x+1=1{y−5=12x+1=1 =>{y=17x=0{y=17x=0
Th3: {y−5=−1x+1=−12{y−5=−1x+1=−12 =>{y=4x=−13(loại){y=4x=−13(loại)
Th4:{y−5=−12x+1=−1{y−5=−12x+1=−1 =>{y=−7x=−2(loại){y=−7x=−2(loại)
Th5: {y−5=2x+1=6{y−5=2x+1=6 =>{y=7x=5{y=7x=5
Th6: {y−5=6x+1=2{y−5=6x+1=2 =>{y=11x=1{y=11x=1
Còn thay tất cả các ước của 12 vào rồi tìm x,y (Trường hợp nào mà x,y∉N thì loại)
Vây (x,y)∈{(...);(...);...}
câu 1;
bạn nhóm 2 cái đầu với 2 cái cuối đặt nhân tử chung nha
câu 2:
bạn chuyển xy sang vế trái rồi nhóm với x hoặc y nha, cái còn lại thì bạn nhóm với 1 và cũng đặt nhân tử chung sau đó thì bạn tính ra nha
BẠN MÀ K LÀM ĐC THÌ CHỊU ĐÓ :)))
mai thùy trang ví dụ mà đưa xy sang vế trái thì sẽ đc là x +y+1 -xy=0 thì là đc x(y-1)+(y+1) hoặc là y(x-1)+(x+1) chứ lm j mà nhóm nhân tử chung đk bn
a, x - xy = 1
=> x(1 - y) = 1
=> x; 1 - y thuộc Ư(1) = {-1; 1}
ta có bảng :
x | -1 | 1 |
1 - y | 1 | -1 |
y | 0 | 2 |
vậy_
b, x2 + xy = 2
=> x(x + y) = 2
=> x; x + y thuộc Ư(2) = {-1; 1; -2; 2}
ta có bảng :
x | -1 | 1 | -2 | 2 |
x + y | -2 | 2 | -1 | 1 |
y | -3 | 1 | 1 | -3 |
vậy_
xy + 3x = 5
=> x . ( 3 + y ) =5
rồi bạn tự xét các trường hợp
Lời giải:
$xy+5x-6y=35$
$\Rightarrow x(y+5)-6(y+5)=5$
$\Rightarrow (y+5)(x-6)=5$
Do $x,y$ là số nguyên nên $x-6, y+5$ cũng là số nguyên. Mà tích của chúng bằng $5$ nên ta có các TH sau:
TH1: $x-6=1, y+5=5\Rightarrow x=7; y=0$
TH2: $x-6=-1, y+5=-5\Rightarrow x=5; y=-10$
TH3: $x-6=5; y+5=1\Rightarrow x=11; y=-4$
TH4: $x-6=-5; y+5=-1\Rightarrow x=1; y=-6$
Vậy có 4 cặp giá trị x,y thỏa mãn.
\(\dfrac{x+2}{-4}=-\dfrac{9}{x+2}\\ \Rightarrow\left(x+2\right)^2=\left(-4\right).\left(-9\right)\\ \Rightarrow\left(x+2\right)^2=36\\ \Rightarrow\left(x+2\right)^2=\pm6^2\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)