Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{5}{x}=\dfrac{-10}{12}.\Rightarrow x=-6.\)
b) \(\dfrac{4}{-6}=\dfrac{x+3}{9}.\Rightarrow x+3=-6.\Leftrightarrow x=-9.\)
c) \(\dfrac{x-1}{25}=\dfrac{4}{x-1}.\left(đk:x\ne1\right).\Leftrightarrow\dfrac{x-1}{25}-\dfrac{4}{x-1}=0.\)
\(\Leftrightarrow\dfrac{x^2-2x+1-100}{25\left(x-1\right)}=0.\Leftrightarrow x^2-2x-99=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11.\\x=-9.\end{matrix}\right.\) \(\left(TM\right).\)
Ta có: \(\dfrac{x+3}{y+5}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+5}{5}\)
\(\Leftrightarrow\dfrac{y+5}{5}=\dfrac{x+3}{3}\)
mà y-x=14
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{y+5}{5}=\dfrac{x+3}{3}=\dfrac{y-x+5-3}{5-3}=\dfrac{14+2}{2}=8\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{y+5}{5}=8\\\dfrac{x+3}{3}=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+5=40\\x+3=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=21\\y=35\end{matrix}\right.\)
Vậy: (x,y)=(21;35)
Cách đơn giản hơn so với bài của bạn Nguyễn Lê Phước Thịnh
Điều kiện: \(y\ne-5\)
Ta có: \(y-x=14\) \(\Rightarrow x=y-14\)
\(\Rightarrow\dfrac{y-14+3}{y+5}=\dfrac{3}{5}\) \(\Rightarrow5y-55=3y+15\) \(\Rightarrow y=35\) \(\Rightarrow x=35-14=21\)
Vậy \(\left(x;y\right)=\left(21;35\right)\)
Lời giải:
$\frac{5}{x}-\frac{y}{3}=\frac{1}{6}$
$\Rightarrow \frac{15-xy}{3x}=\frac{1}{6}$
$\Rightarrow \frac{2(15-xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(15-xy)=x$
$\Rightarrow 30=2xy+x$
$\Rightarrow 30=x(2y+1)$
$\Rightarrow x=\frac{30}{2y+1}$
Vì $x$ nguyên nên $\frac{30}{2y+1}$ nguyên
$\Rightarrow 2y+1$ là ước của $30$
Vì $2y+1$ lẻ nên $2y+1\in\left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow y\in\left\{-1; 0; -2; 1; -3; 2; -8; 7\right\}$
Tương ứng với các giá trị $y$ trên ta có: $x\in\left\{-30; 30; -10; 10; -6; 6; -2;2\right\}$
x/5=3/y
nên xy=15
mà 0<x<y
nên \(\left(x,y\right)\in\left\{\left(1;15\right);\left(3;5\right)\right\}\)
1. a, \(\dfrac{x}{7}=\dfrac{9}{y}\Leftrightarrow xy=9.7\)
<=> xy = 63
=> x; y \(\inƯ\left(63\right)\)
Lại có x > y nên ta có bảng :
x | 63 | -1 | 21 | -3 | 9 | -7 |
y | 1 | -63 | 3 | -21 | 7 | -9 |
@Đặng Hoài An
1. b, \(\dfrac{-2}{x}=\dfrac{y}{5}\Leftrightarrow-2.5=xy\)
<=> -10 = xy
=> x; y \(\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lại có : x < 0 < y
=> x = -1; -2; -5; -10
Tương ứng y = 10; 5; 2; 1
@Đặng Hoài An
b/ Có \(\dfrac{x-7}{y-6}=\dfrac{7}{6}\)
nên \(6.\left(x-7\right)=7.\left(y-6\right)\)
\(\rightarrow\) \(6.x-6.7=7.y-7.6\)
\(\Rightarrow\) \(6x=7y\). Mà \(x-y=-4\) nên \(6x-6y=-24\)
\(\rightarrow\) \(7y-6x=-24\)
\(\rightarrow1y=-24\)
Và \(x-y=-4\) \(\Rightarrow\) \(x=\left(-4\right)+y\) \(=\left(-4\right)+\left(-24\right)\)\(=-28\)
Vậy \(x=-28\) \(;\) \(y=-24\)
Nhân cả 2 vế với 3 ta có:
\(pt\Leftrightarrow2x-\dfrac{6}{y}=1\Leftrightarrow2x=1+\dfrac{6}{y}\)
Nhận thấy rằng 2x là số nguyên, 1 là số nguyên nên \(\dfrac{6}{y}\) cũng là số nguyên
=> y ∈ Ư(6) = {\(\pm\)1; \(\pm\)2; \(\pm\)3; \(\pm\)6}
Mà 2x là số chẵn => \(1+\dfrac{6}{y}\) là số chẵn => y ∈ {\(\pm\)2; \(\pm\)6}
+) \(y=-6\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{-6}\right)=0\)
+) \(y=-2\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{-2}\right)=-1\)
+) \(y=2\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{2}\right)=2\)
+) \(y=6\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{6}\right)=1\)