Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{10}{7}< \frac{14}{7}=2\Rightarrow x< 2\)
Mà \(x\in N\)
TH1 : \(x=0;\)ta có :
\(\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
\(\Rightarrow y+\frac{1}{z}=\frac{7}{10}\)
Mà \(\frac{7}{10}< 1\)
\(\Rightarrow y< 1\)
Mà \(y\in N\)
\(\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z}=\frac{7}{10}\)
\(\Rightarrow z=\frac{10}{7}\)
Mà \(\frac{10}{7}\notin N\)
Do đó loại trường hợp này.
TH2 : \(x=1;\)ta có :
\(1+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{10}{7}-1\)
\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{3}{7}\)
\(\Rightarrow y+\frac{1}{z}=\frac{3}{7}\)
Mà \(\frac{3}{7}< 1\)
\(\Rightarrow y< 1\)
Mà \(y\in N\)
\(\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z}=\frac{3}{7}\)
\(\Rightarrow z=\frac{7}{3}\)
Mà \(\frac{7}{3}\notin N\)
Do đó không có x ;y ; z thỏa mãn đề bài .
x;y;z có vai trò tương đương nên giả sử: \(0< x\le y\le z\)
Khi đó ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\Rightarrow\frac{3}{x}\ge1\Rightarrow x\le3\). Do x;y;z thuộc N* nên:
- x = 1 => không tìm được y,z thuộc N* - Loại
- x = 2: \(\Rightarrow\frac{2}{y}\ge\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow x=2\le y\le4\). Nếu y = 2 thì không tìm được z. Nếu y = 3; z = 6. Nếu y = 4 thì z = 4.
- x = 3 => y = 3; z = 3
Vậy có 3 bộ số thỏa mã đề bài là (2; 3; 6); (2 ; 4 ; 4) ; (3 ; 3 ; 3)
Đảo các bộ số này với x ; y; z ta có 10 nghiệm của PT.
a, \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)
\(\Rightarrow1\cdot6=x\cdot\left(1+2y\right)\)
\(\Rightarrow x\left(1+2y\right)=6\)
\(\Rightarrow x;1+2y\inƯ\left(6\right)=\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
ta có bảng :
x | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
1+2y | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
y | loại | loại | 2 | -1 | loại | loại | 1 | 0 |
vậy_
phần b tương tự
\(6,8-\left(4,9-x\right)=2x-\frac{3}{4}\)
\(6,8-4,9+x=2x-\frac{3}{4}\)
\(1,9+x=2x-\frac{3}{4}\)
\(x-2x=-\frac{3}{4}-1,9\)
\(-x=-\frac{53}{20}\)
\(x=\frac{53}{20}\)
=.= hok tốt!!
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{2\left(x+y+z\right)}.\)
Nếu x+y+z=0 ta có \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
khi đó \(M=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)=\frac{\left(-z\right)\left(-x\right)\left(-y\right)}{xyz}=-1.\)
nếu \(x+y+z\ne0\)=>\(\hept{\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}}\)
ta có \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}.\)
suy ra \(M=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}=\)
\(\frac{\left(2x\right)\left(2y\right)\left(2z\right)}{xyz}=8\)
vậy M=8 hoặc M=-1
Ta có: \(x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}\)
\(x+y+z=\frac{13}{12}:2=\frac{13}{24}\)
\(x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)
\(y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)
\(z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)
Vậy x = ....; y = .....; z = .......
k cho mik nha
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
\(\Leftrightarrow\frac{y}{xy}=\frac{x}{xy}=\frac{1}{3}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)
\(\Leftrightarrow3\left(x+y\right)=xy\)
\(\Leftrightarrow3x+3y-xy=0\)
\(\Leftrightarrow x\left(3-y\right)+3y=0\)
\(\Leftrightarrow x\left(3-y\right)+3y-9=9\)
\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=9\)
\(\Leftrightarrow\left(x-3\right)\left(3-y\right)=9\)
Đến này bạn lập bảng ra nhé
tíc mình nha