K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(xy-3x-3y=2\)

\(\Rightarrow x\left(y-3\right)-3y=2\)

\(\Rightarrow x\left(y-3\right)-3y+9=2+9\)

\(\Rightarrow x\left(y-3\right)-3\left(y-3\right)=11\)

\(\Rightarrow\left(y-3\right)\left(x-3\right)=11\)

\(+,\hept{\begin{cases}y-3=1\\x-3=11\end{cases}\Rightarrow\hept{\begin{cases}y=4\\x=14\end{cases}}}\)                    \(+,\hept{\begin{cases}y-3=-1\\x-3=-11\end{cases}\Rightarrow\hept{\begin{cases}y=2\\x=-8\end{cases}}}\)           

\(+,\hept{\begin{cases}y-3=11\\x-3=1\end{cases}\Rightarrow\hept{\begin{cases}y=14\\x=4\end{cases}}}\)              \(+,\hept{\begin{cases}y-3=-11\\x-3=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-8\\x=2\end{cases}}}\)

14 tháng 1 2019

xy-3x-3y=2

x(y-3)-3y=2

x(y-3)-3y+9=2+9

x(y-3)-(3y-9)=11

x(y-3)-3(y-3)=11

(y-3)(x-3)=11

11=1.11

   =11.1

   =(-1).(-11)

   =(-11).(-1)

Ban tu lam not nhe

17 tháng 3 2019

Bài toán "hay" nhỉ?x, y thuộc Z thì \(x\left(x+y\right)+3x+3y\) nguyên là điều hiển nhiên rồi còn tìm cái qq gì nữa?

9 tháng 7 2020

\(a,A=\frac{x-4}{x+1}=\frac{(x+1)-1-4}{x+1}=1-\frac{5}{x+1}\)

Để \(x\in Z\)thì \(x+1\inƯ(5)\)

mà \(Ư(5)=(5;1;-1;-5)\)

Ta có bảng sau

x + 151-1-5
x40-2-6

Vậy \(x=(4;0;-2;-6)\)

\(b,B=\frac{3x-5}{x-2}=\frac{3x-6+1}{x-2}=\frac{3x-6}{x-2}+\frac{1}{x-2}=\frac{3(x-2)}{x-2}+\frac{1}{x-2}=3+\frac{1}{x-2}\)

Để \(x\in Z\)thì \(x-2\inƯ(1)\)

mà \(Ư(1)=(1;-1)\)

Với \(x-2=1\Rightarrow x=3\)

Với \(x-1=-1\Rightarrow x=0\)

Vậy \(x=(3;0)\)

Chúc bạn học tốt nhé

\(A=\frac{x-4}{x+1}=\frac{x+1-5}{x+1}=\frac{-5}{x+1}\)

\(\Rightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng : 

x + 11-15-5
x0-24-6

Vì \(x\inℤ\)thì x ta tìm đc tm 

\(B=\frac{3x+5}{x-2}=\frac{3\left(x-2\right)+11}{x-2}=\frac{11}{x-2}\)

\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng : 

x - 21-111-11
x3113-9

Vì x\(\inℤ\)nên x ta tìm đc tm 

14 tháng 12 2020

giá trị tuyện đối luôn là số tự nhiên 

số tự nhiên chỉ có thể 0 + 0 + 0 =0 nên x;y;z = 0

28 tháng 7 2016

1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y 
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3) 
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13. 
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên) 
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8 
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4 
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13) 

2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0. 
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y. 
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2 
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11 
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên) 
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7 
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7) 

3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y. 
Ta đặt y1 = - y > 0. 
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x. 
3a. y1 ≤ x 
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3) 
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5 
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên) 
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1 
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2) 

3b. x < y1 
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3) 
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7 
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên) 
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2 
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7) 

Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2) 
------------- 
Kết luận: tất cả các nghiệm: 
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4) 

Ai tích mình mình tích lại

28 tháng 7 2016

đúng rồi