Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) \(\frac{x-3}{x+7}=\frac{-5}{-6}\)
=> \(\frac{x-3}{x+7}=\frac{5}{6}\)
=> (x - 3).6 = 5.(x + 7)
=> 6x - 18 = 5x + 35
=> 6x - 5x = 35 + 18
=> x = 53
b) \(\frac{x-7}{x+3}=\frac{4}{3}\)
=> (x - 7). 3 = (x + 3). 4
=> 3x - 21 = 4x + 12
=> 3x - 4x = 12 + 21
=> -x = 33
=> x = -33
c) \(\frac{x-10}{6}=-\frac{5}{18}\)
=> (x - 10) . 18 = -5 . 6
=> 18x - 180 = -30
=> 18x = -30 + 180
=> 18x = 150
=> x = 150 : 18 = 25/3
d) \(\frac{x-2}{4}=\frac{25}{x-2}\)
=> (x - 2)(x - 2) = 25 . 4
=> (x - 2)2 = 100
=> (x - 2)2 = 102
=> \(\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=-8\end{cases}}\)
e) \(\frac{7}{x}=\frac{x}{28}\)
=> 7 . 28 = x . x
=> 196 = x2
=> x2 = 142
=> \(\orbr{\begin{cases}x=14\\x=-14\end{cases}}\)
f) \(\frac{40+x}{77-x}=\frac{6}{7}\)
=> (40 + x) . 7 = (77 - x).6
=> 280 + 7x = 462 - 6x
=> 280 - 462 = -6x + 7x
=> -182 = x
=> x = -182
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
Sửa lại đề nha
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}\)
Mà x+z=7+y
Suy ra x+z-y=7
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)
Suy ra;
\(\frac{x}{3}=1;x=3.1=3\)
\(\frac{y}{6}=1;y=6.1=6\)
\(\frac{z}{10}=1;z=10.1=10\)
Vậy x=3;y=6;z=10
ủng hộ đầu xuân năm mới tròn 770 nha
a) \(\left(x+5\right)\left(3x-12\right)>0\)
\(\left(x+5\right).3.\left(x-4\right)>0\)
\(\Rightarrow\hept{\begin{cases}x+5>0\\x-4>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>-5\\x>4\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x< 4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>4\\x< -5\end{cases}}\)
vậy...
Lời giải:
Với $x,y$ nguyên thì $x+3,y-7$ cũng nguyên. Mà $(x+3)(y-7)=-5$ nên ta có các TH sau:
TH1: $x+3=1, y-7=-5\Rightarrow x=-2; y=2$ (tm)
TH2: $x+3=-1, y-7=5\Rightarrow x=-4; y=12$ (tm)
TH3: $x+3=5, y-7=-1\Rightarrow x=2; y=6$ (tm)
TH4: $x+3=-5, y-7=1\Rightarrow x=-8; y=8$ (tm)