Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mấy cái số viết liền ở câu a bạn thêm phân số nha, mình làm nhanh nên quên ghi.
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{3}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}=\frac{x-2y+3z}{2-6+9}=\frac{19}{5}\)
\(\frac{x}{2}=\frac{19}{5}\Rightarrow x=\frac{38}{5}\)
\(\frac{y}{3}=\frac{19}{5}\Rightarrow y=\frac{57}{5}\)
\(\frac{z}{3}=\frac{19}{5}\Rightarrow z=\frac{57}{5}\)
a)\(x.x=\frac{y}{-3}.\frac{y}{-3}=\frac{z}{4}.\frac{z}{4}=\frac{x^2+y^2-z^2}{1+9-16}=\frac{6}{-6}=-1\)
không tồn tại vì x.x>=0
b)\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)
\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{z}{8}=\frac{y}{6}\)
Suy ra \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}=\frac{x-y+z}{15-6+8}=\frac{10}{17}\)
\(x=15.\frac{10}{17}=\frac{150}{17}\)
\(y=6.\frac{10}{17}=\frac{60}{17}\)
c) \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{14}{2}=7\)
x=7.5=35; y=3.7=21
d) \(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)
x=2.2=4; y=2.5=10
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\Rightarrow x=10\\\frac{y}{3}=5\Rightarrow y=10\end{cases}}\)
Vậy x = 10, y = 10
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{2x+3y}{2.7+3.8}=\frac{4}{60}=\frac{1}{12}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{1}{12}\Rightarrow x=\frac{7}{12}\\\frac{y}{8}=\frac{1}{12}\Rightarrow y=\frac{2}{3}\end{cases}}\)
Vậy ...
\(c,3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{1}{1}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=1\Rightarrow x=4\\\frac{y}{3}=1\Rightarrow y=3\end{cases}}\)
Vậy ....
d,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x-y}{3-4}=\frac{48}{\left(-1\right)}=\left(-48\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-48\right)\Rightarrow x=-144\\\frac{y}{4}=\left(-48\right)\Rightarrow y=-192\end{cases}}\)
Vậy ...
b. Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\) (1)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)(2)
Từ (1) và (2) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{11}{33}=\frac{1}{3}\)
\(\frac{x}{15}=\frac{1}{3}\Rightarrow x=\frac{1}{3}\cdot15=5\) \(\frac{y}{10}=\frac{1}{3}\Rightarrow y=\frac{1}{3}\cdot10=\frac{10}{3}\)
\(\frac{z}{8}=\frac{1}{3}\Rightarrow z=\frac{1}{3}\cdot8\Rightarrow z=\frac{8}{3}\)
c. Ta thấy: \(\left(x+2\right)^{n+1}\ge0,\left(x+2\right)^{n+11}\ge0\) với mọi x.
Mà \(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\Rightarrow x+2\in\left\{0,1,-1\right\}\)
TH1: x + 2 = 0 => x = 0 - 2 => x = -2
TH2: x + 2 = 1 => x = 1 - 2 => x = -1
TH3: x + 2 = -1 => x = -1 - 2 => x = -3