K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Ta có :

\(x.y-2x=0\)

\(x.y=0+2x\)

\(x.y=2x\)

\(y=2\)và \(x=1\)

2 tháng 7 2017

 x.y-2x=0

x( y-2) = 0

=> x= 0 và y-2 = 0

=> x= 0 và y=2

9 tháng 1 2018

\(2x+2y-xy=0\Leftrightarrow\left(2x-xy\right)-\left(4-2y\right)=-4\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-4\)

\(\Leftrightarrow\left(x-2\right)\left(2-y\right)=-4\)

x-2-11-22-44
2-y4-42-21-1
x1304-26
y-260413

Giải:

a) \(\left(x-4\right).\left(y+1\right)=8\) 

\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng giá trị:

x-4-8-4-2-11248
y+1-1-2-4-88421
x-402356812
y-2-3-5-97310

\(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\) 

b) \(\left(2x+3\right).\left(y-2\right)=15\) 

\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\) 

2x+3-15-5-3-113515
y-2-1-3-5-1515531
x-9-4-3-2-1016
y1-1-3-1317753

Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\) 

Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\) 

c) \(xy+2x+y=12\) 

\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\) 

\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\) 

x+112714
y+214721
x01613
y1250-1

Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\) 

Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\) 

d) \(xy-x-3y=4\) 

\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\) 

\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\) 

\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\) 

Ta có bảng giá trị:

x-317
y-171
x410
y82

Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)

23 tháng 8 2015

a) x.y - x - y + 1 = 0 

=> x.(y - 1) - (y - 1) = 0 

=> (x - 1).(y - 1) = 0 

=> x - 1 = 0 hoặc y - 1 = 0 

=> x = 1 hoặc y = 1

Vậy x; y là số tự nhiên thỏa mãn x = 1 hoặc y = 1

b) => (xy - 2x) - (y - 2) = 0 

=> x(y - 2) - 1. (y - 2) = 0 

=> (x - 1) .(y - 2) = 0 => x - 1 = 0 hoặc y- 2 = 0 

=> x = 1 hoặc y = 2

Vậy x; y là số tự nhiên thỏa mãn x =1 hoặc y = 2

c) => (x .y - x) - (y - 1) = 3

=> x. (y - 1) - (y - 1) = 3

=> (x - 1).(y - 1) = 3

=> x - 1 \(\in\) Ư(3) = {1;3}

x -1 = 1 => x= 2 => y - 1 = 3 => y = 4

x - 1 = 3 => x = 4 => y - 1 = 1 => y = 1

Vậy (x; y) = (2;4) ; (4;1)

DD
21 tháng 6 2021

1) \(\left(x-4\right)\left(y+1\right)=8\)

Do \(y\)là số tự nhiên nên \(y+1\ge1\)nên 

ta có bảng giá trị: 

x-41248
y+18421
x56812
y7310

2) \(\left(2x+3\right)\left(y-2\right)=15\)

Có \(x\)là số tự nhiên nên \(2x+3\ge3\). Ta xét bảng giá trị: 

2x+33515
y-2531
x016
y793

3) \(xy+2x+y=12\)

\(\Leftrightarrow x\left(y+2\right)+y+2=14\)

\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=14\)

Tiếp tục bạn làm tương tự 1) và 2).

4) \(xy-x-3y=4\)

\(\Leftrightarrow y\left(x-3\right)-x+3=7\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=7\)

Tiếp tục bạn làm tương tự 1) và 2). 

16 tháng 12 2016

x.y+2x+y =                0+13 = 13

Chuyển vế , ta được x=3 ; y = 7

3 tháng 11 2016

(x+5)(y-3)=15

x+5=15=>x=10

y-3=15=>y=18

b, 2xy+2x+2y=0

2(xy+x+y)=0

xy+x+y=2

10 tháng 12 2017

đúng rồi

(2x+1)(y-3)=48

mà 2x+1 lẻ; y-3>=-3 vì x,y là các số tự nhiên

nên \(\left(2x+1\right)\left(y-3\right)=1\cdot48=3\cdot16\)

=>\(\left(2x+1;y-3\right)\in\left\{\left(1;48\right);\left(3;16\right)\right\}\)

=>\(\left(2x;y\right)\in\left\{\left(0;51\right);\left(2;19\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(0;51\right);\left(1;19\right)\right\}\)

mà x,y là các số tự nhiên khác 0

nên \(\left(x;y\right)=\left(1;19\right)\)

=>\(x\cdot y=1\cdot19=19\) là số nguyên tố