K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:

$3^x-2^y=1$

Nếu $y=0$ thì $3^x=1+2^y=1+1=2$ (loại) 

Nếu $y=1$ thì $3^x=1+2^y=3\Rightarrow x=1$ 

Nếu $y\geq 2$:

$3^x-1=2^y\equiv 0\pmod 4$

$\Rightarrow (-1)^x-1\equiv 0\pmod 4$

$\Rightarrow x$ chẵn.

Đặt $x=2k$ với $k$ tự nhiên. Khi đó:
$2^y=3^{2k}-1=(3^k-1)(3^k+1)$

$\Rightarrow$ tồn tại $m,n\in\mathbb{N},m< n, m+n=y$$ sao cho:

$3^k-1=2^m, 3^k+1=2^n$ 

$\Rightarrow 2=2^n-2^m=2^m(2^{n-m}-1)$

Do $m< n$ nên $n-m\geq 1\Rightarrow 2^{n-m}$ chẵn.

$\Rightarrow 2^{n-m}-1$ lẻ. Mà $2^{n-m}-1$ là ước của 2 nên $2^{n-m}-1=1$

$\Rightarrow 2^m=2; n-m=1$

$\Rightarrow m=1; n=2$

$\Rightarrow y=m+n=3$. $3^k-1=2^m=2\Rightarrow k=1$

$\Rightarrow x=2k=2$

Vậy $(x,y)=(1,1), (2,3)$

9 tháng 12 2023

tại sao ở dòng 5 là suy ra được ⇒(−1)x−1≡0(mod4) vậy ạ

NV
17 tháng 12 2020

Bạn xem lại đề bài, mặc dù bài này giải được ra kết quả cụ thể, nhưng chắc không ai cho đề như vậy cả

Sau khi tính toán thì \(P_{min}=4+2\sqrt{3}\) 

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{6\sqrt{3}-9}}{6};\dfrac{3+\sqrt{6\sqrt{3}-9}}{6}\right)\) và hoán vị

Nhìn thật kinh khủng, chẳng có lý gì cả.

Nếu điều kiện \(x+y=1\) thì biểu thức \(P=\dfrac{a}{x^3+y^3}+\dfrac{b}{xy}\) cần có tỉ lệ \(\dfrac{b}{a}\ge3\) để ra 1 kết quả đẹp mắt và bình thường

Ví dụ có thể cho đề là \(P=\dfrac{1}{3\left(x^3+y^3\right)}+\dfrac{1}{xy}\) hoặc \(P=\dfrac{1}{x^3+y^3}+\dfrac{4}{xy}\) gì đó :)

NV
26 tháng 11 2021

a.

\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)

Do y và y+1 nguyên tố cùng nhau  \(\Rightarrow32⋮\left(y+1\right)^2\)

\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)

\(\Rightarrow...\)

b.

\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)

\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)

Lại có:

\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)

\(\Rightarrow4b+1⋮d\) (2)

 (1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)

11 tháng 8 2017

Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\forall x\in R\)

Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)

Cộng theo vế 2 BĐT (1);(2) ta có:

\(2\left(x^2+y^2+z^2\right)+3\ge45\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge42\Rightarrow x^2+y^2+z^2\ge21\)

Khi x=y=z=1

11 tháng 8 2017

Sửa đề : cho \(CM:x^2+y^2+z^2\ge21\)

Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xy-2xz\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)(1)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z+3\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge2x+2y+2z-3\)(2)

Cộng vế với vế của (1); (2) lại ta được :

\(2\left(x^2+y^2+z^2\right)\ge xy+yz+xy+2x+2y+2z-3\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge45-3=42\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{42}{2}=21\)(đpcm)

31 tháng 10 2020

Áp dụng bất đẳng thức AM - GM, ta được: \(2xy-4=x+y\ge2\sqrt{xy}\)

Đặt \(\sqrt{xy}=t\)thì ta có: \(2t^2-2t-4\ge0\Leftrightarrow2\left(t-2\right)\left(t+1\right)\ge0\Rightarrow t\ge2\)

\(\Rightarrow xy\ge4\)

\(P=xy+\frac{1}{x^2}+\frac{1}{y^2}\ge xy+\frac{2}{xy}=\left(\frac{2}{xy}+\frac{xy}{8}\right)+\frac{7xy}{8}\ge2\sqrt{\frac{2}{xy}.\frac{xy}{8}}+\frac{7.4}{8}=\frac{9}{2}\)

Đẳng thức xảy ra khi x = y = 2

12 tháng 11 2018

\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)