Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{3}=\frac{y-7}{4}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{3}=\frac{y-7}{4}=\frac{x+5+y-7}{3+4}=\frac{23-2}{7}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot3-5=4\\y=3\cdot4+7=19\end{cases}}\)
đặt \(k=\frac{x+5}{3}=\frac{y-7}{4}\)
\(\Rightarrow\hept{\begin{cases}x=3k-5\\y=4k+7\end{cases}}\)
\(\Rightarrow x+y=3k-5+4k+7=7k+2=23\)
\(\Rightarrow k=\frac{23-2}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=19\end{cases}}\)
các câu tiếp theo tương tự
\(x-1=\left(x-1\right)^5\)
\(\left(x-1\right)-\left(x-1\right)^5=0\)
\(\left(x-1\right)\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\1-\left(x-1\right)^4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
b) \(\frac{2}{x-1}+\frac{y-1}{3}=\frac{1}{6}\)
Câu 1:
Để B là số nguyên
=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}
Ta có bảng:
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
B | 5 | 1 | -5 | -1 |
=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)
Vì \(3^y⋮3,35chia3dư2\)(với \(x\ge1\))
=> \(3^y+35\)chia 3 dư 2
MÀ số chính phương chia 3 luôn dư 0 hoặc 1
=> không có giá trị nào của x.y thỏa mãn
Với y=0 =>x=6
Vậy x=6,y=0