Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)
<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)
Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)
Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)
Tới đây dễ tự làm
Ta có:1/(x+y)=1/x+1/y
<=>1/(x+y)=(x+y)/xy
<=>(x+y)(x+y)=xy
<=>(x+y)2=xy
Mà (x+y)2 >= 0 với mọi x;y(*)
xy<0( do x;y trái dấu).Mâu thuẫn với (*)
Vậy không tồn tại cặp (x;y) nào thoả mãn đề bài
Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)
\(=>\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)^2=xy\)
nếu x; y trái dấu thì xy<0 mà \(\left(x+y\right)^2\ge0\)
Nên \(\left(x+y\right)^2\ne xy\) khi x;y trái dấu
Vậy không có các cặp (x;y) trái dấu thỏa mãn
3/x+y/3=5/6
<=>3/x=5/6-y/3
<=>3/x=5/6-2y/6=(5-2y)/6
<=>x.(5-2y)=3.6=18
sau đó lập bảng , tìm x,y
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Mà \(x^2+y^2+z^2\le3\)
\(\Rightarrow xy+yz+xz\le3\)
Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)
Ta có \(xy+yz+xz\le3\)
\(\Rightarrow xy+yz+xz+3\le6\)
\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow P\ge\dfrac{3}{2}\)
Vậy \(P_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(x=y=z=1\)
ta có :5/x+y/4=1/8
5/x=1/8-y/4
5/x=1/8-2y/8
5/x=1-2y/8
suy ra x*(1-2y)=40
suy ra 1-2y thuộc ước của 40
mà 1-2y là số lẻ
nên ta có bảng giá trị sau
1-2y=1 5 -1 -5
x =40 8 -40 -8
y= 0 -2 1 3
vậy...
\(x+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{1}{\frac{7}{3}}\)
\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{1}{2+\frac{1}{3}}\Leftrightarrow x=1;y=2;z=3\)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(=>\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(=>\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
\(=>x.\left(1-2y\right)=5.8=40\)
=>x và 1-2y là ước của 40
Do 1-2y là 1 số lẻ và là ước lẻ của 40
=>1-2y E {-1;1;-5;5}
+)1-2y=-1=>y=1
x=40:(-1)=>x=-40
+)1-2y=1=>y=0
x=40:1=>x=40
+)1-2y=-5=>y=3
x=40:(-5)=>x=-8
+)1-2y=5=>y=-2
x=40:5=>x=8
Vậy có 4 cặp (x;y) thỏa mãn đề bài là:(-40;1);(-40;0);(8;-2);(-8;3)
x = 8; y = -4
bài này có trong violympic vòng 16 cấp tỉnh nek