K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Giải:

Ta có:

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(\Leftrightarrow x^2y^2-x^2+2y^2-2=0\)

\(\Leftrightarrow x^2\left(y^2-1\right)+2\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(y^2-1\right)\left(x^2+2\right)=0\)

Dễ thấy: \(x^2\ge0\forall x\Leftrightarrow x^2+2\ge2>0\) (Vô nghiệm)

\(\Leftrightarrow x\) tùy ý

\(\Leftrightarrow y^2-1=0\Leftrightarrow\) \(\left[{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\)

Vậy \(x\) tùy ý và \(y=1\) hoặc \(y=-1\)

11 tháng 4 2023

sssss

1 tháng 5 2017

<=> x2 + 2x2y2 + 2y2 - (x2y2 + 2x2) - 2 = 0

<=> x2 + 2x2y2 + 2y2 - x2y2 - 2x- 2 = 0

<=> -x2 + x2y2 + 2y2 - 2 = 0

<=> x2 (y2 - 1) + 2 (y- 1) = 0

<=> (x+ 2)(y2 - 1) = 0

Vì x2 + 2 > 0 với mọi x => y- 1 = 0 <=> y = ± 1.

Vậy x \(\in\)R, y = ± 1.

_Kik nha!! ^ ^

9 tháng 5 2018

<=>x2+2x2+2y2-x2y2-2x2-2=0

<=>-x2+x2y2+2y2-2=0

<=>x2(y2-1)+2(y2-1)=0

<=>(x2+2)(y2-1)=0

Vì x2+2>0 với mọi x=>y2-1=0<=>y=1 hoặc (-1)

Vậy x thuộc R,Y = 1 hoặc (-1

1 tháng 4 2017

9/5 Nhớ cho mjnh nha

1 tháng 4 2017

ko đúng

12 tháng 4 2021

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 M=x3+x2y−2x2−xy−y2+3y+x−1M=x3+x2y−2x2−xy−y2+3y+x−1

M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)

M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1

M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1

M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1

M=x2.0+y.0+0+1M=x2.0+y.0+0+1

M=1M=1

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)

N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2

N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2

N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2

N=x2.0−xy.0+2.0+2N=x2.0−xy.0+2.0+2

N=2N=2

P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3

P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3

P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3

P=x3.0+x2y.0−x.0+3P=x3.0+x2y.0−x.0+3

P=3

3 tháng 5 2019

Q= (x- 2y+ 3/4xy) - (2x- y+ 3/4xy)

Q = x- 2y+ 3/4xy - 2x2 + y- 3/4xy

Q= (x- 2x2) + (-2y2 + y2) + (3/4xy - 3/4xy)

Q= -x2 - y2 

#Hk_tốt

#Ken'z

3 tháng 5 2019

\(\left(2x^2-y^2+\frac{3}{4}xy\right)+Q=x^2-2y^2+\frac{3}{4}xy\)

\(\Rightarrow Q=x^2-2y^2+\frac{3}{4}xy-2x^2+y^2-\frac{3}{4}xy\)

\(\Rightarrow Q=-x^2-y^2\)

Vậy \(Q=-x^2-y^2\)

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1