Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2y^2-x^2-3y^2-2x-1=0\)
\(\Leftrightarrow y^2\left(x^2-3\right)-\left(x+1\right)^2=0\)
\(\Leftrightarrow y^2\left(x^2-3\right)=\left(x+1\right)^2\left(1\right)\)
Vì y2 và (x+1)2 đều là các số chính phương, do đó x2-3 cũng phải là số chính phương.
Đặt \(x^2-3=a^2\) (a là số tự nhiên).
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=3\)
Ta có x+a>x-a. Lập bảng:
x+a | 3 | -1 |
x-a | 1 | -3 |
x | 2 | -2 |
Với \(x=2\) . \(\left(1\right)\Rightarrow y^2=9\Leftrightarrow y=\pm3\)
Với \(x=-2\). \(\left(1\right)\Rightarrow y^2=1\Leftrightarrow y=\pm1\)
Vậy các số nguyên \(\left(x;y\right)=\left(2;3\right),\left(2;-3\right),\left(-2;1\right),\left(-2;-1\right)\)
1) \(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)=\sqrt{\dfrac{4-2\sqrt{3}}{2}}\left(\sqrt{5}+\sqrt{2}\right)\)
\(=\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}\left(\sqrt{5}+\sqrt{2}\right)=\dfrac{\sqrt{3}-1}{\sqrt{2}}\left(\sqrt{5}+\sqrt{2}\right)=\dfrac{\sqrt{15}+\sqrt{6}-\sqrt{5}-\sqrt{2}}{\sqrt{2}}\)
theo mình nghĩ thì đề nên là \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
như thế thì sẽ \(=\dfrac{\sqrt{3}-1}{\sqrt{2}}.\sqrt{2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\) đẹp hơn,đó là mình nghĩ vậy thôi,còn nếu đề bạn đúng thì mình làm ở trên đó
2) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\dfrac{6-2\sqrt{5}}{2}}+\sqrt{\dfrac{6+2\sqrt{5}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{2}}=\dfrac{\sqrt{5}-1}{\sqrt{2}}+\dfrac{\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
3) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow A^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow A=\sqrt{5}+1\left(A\ge0\right)\)
4) \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}=\dfrac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\dfrac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}\)
\(=\dfrac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\2x^2+2x^2y^2-4y=0\left(1\right)\end{matrix}\right.\Rightarrow}x^3+2y^2-4y-2x^2-2x^2y^2+4y=0\Rightarrow x^3+1-2x^2y^2+2y^2-2x^2+2=0\Rightarrow\left(x+1\right)\left(x^2-x+1\right)-2y^2\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x^2-x+1-2xy^2+2y^2-2x+2\right)=0\Rightarrow x=-1\)Thay x=-1 vào (1) ta được y2-2y+1=0⇒ (y-1)2=0⇒y-1=0⇒y=1
Do đó Q=x2+y2=(-1)2+12=2
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}$
$=x+y+\frac{2}{x+y}$
$=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}$
$\geq \frac{x+y}{2}+2\sqrt{\frac{x+y}{2}.\frac{2}{x+y}}$ (áp dụng BDT Cô-si)
$\geq \frac{2\sqrt{xy}}{2}+2=\frac{2}{2}+2=3$
Vậy ta có đpcm
Dấu "=" xảy ra khi $x=y=1$