Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 225 , y = 3 nhé :)
Phần giải mình đã làm cho bạn ở H.vn
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)
Tương tự hai BĐT còn lại và cộng theo vế suy ra:
\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)
Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó
Is it true?
\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)
\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)
\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)
\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Dấu "=" xảy ra khi \(x=y=1\)
Lời giải:
ĐK: $x,y\geq 2$
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x\sqrt{2y-4}=\sqrt{x^2.2(y-2)}=\sqrt{2x(xy-2x)}\leq \frac{2x+(xy-2x)}{2}=\frac{xy}{2}\)
\(y\sqrt{2x-4}=\sqrt{y^2.2(x-2)}=\sqrt{2y(xy-2y)}\leq \frac{2y+(xy-2y)}{2}=\frac{xy}{2}\)
Cộng theo vế:
\(x\sqrt{2y-4}+y\sqrt{2x-4}\leq xy\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x,y\geq 2\\ 2x=xy-2x\\ 2y=xy-2y\end{matrix}\right.\Rightarrow x=y=4\)
\(y=\sqrt[3]{18+\sqrt{x+100}}+\sqrt[3]{18-\sqrt{x+100}}\) (Điều kiện xác định : \(x\ge-100\))
Ta có : \(36=\left(18+\sqrt{x+100}\right)+\left(18-\sqrt{x+100}\right)=\left(\sqrt[3]{18+\sqrt{x+100}}\right)^3+\left(\sqrt[3]{18-\sqrt{x+100}}\right)^3\)
Đặt \(a=\sqrt[3]{18+\sqrt{x+100}}\) ; \(b=\sqrt[3]{18-\sqrt{x+100}}\)
\(\Rightarrow a^3+b^3=36\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=36\). Vì \(a+b\in Z^+\) nên a+b \(\in\) Ư(36)
\(\Rightarrow a+b\in\left\{1;2;3;4;6;9;12;18;36\right\}\)
Giải từng trường hợp , được x = 225 , y = 3 thoả mãn đề bài.
Cám ơn chị rất nhiều ạ!!!