Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta có :
\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x+1\left(∗\right)\Rightarrow x^2-x+1|3x+1\Rightarrow x^2-x+1\le\left|3x-1\right|\)
TH1 :
\(x\ge\frac{1}{3}\Leftrightarrow x^2-x+1\le3x-1\Leftrightarrow x^2-4x+2\le0\Leftrightarrow2-\sqrt{2}\le x\le2+\sqrt{2}\left(tm\right)\)
Mà \(x\in Z\Rightarrow x\in\left\{1;2;3\right\}\)
TH2 :
\(x\le\frac{1}{3}\Leftrightarrow x^2-x+1\le-3x+1\Leftrightarrow x^2+2x\le0\Leftrightarrow-2\le x\le0\left(tm\right)\)
Mà \(x\in Z\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3\right\}\)
+) \(\forall x=−1⇒\left(∗\right)⇔3(y^2-y)=−4⇔y^2−y=−\frac{4}{3}\left(vn\right)\)
+) \(\forall x=0⇒\left(∗\right)⇔y^2=−1\left(vn\right)\)
+) \(\forall x=1\Rightarrow\left(∗\right)\Leftrightarrow y^2+y=2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\left(tm\right)}\)
Với x = 2 ; x = 3 ... ( vn ) ( Làm tương tự như trên:v )
Vậy các nghiệm nguyên của pt đã cho là \(\left(x;y\right)=\left\{\left(-2;1\right);\left(1;1\right);\left(1;-2\right)\right\}\)
\(hpt\Leftrightarrow\hept{\begin{cases}xy=y^2\\x^2+y^2=-50\end{cases}}\)
Dễ thấy: \(VT=x^2+y^2\ge0>-50=VP\)
sai đề
\(A=\left(1+\frac{x^2}{y^2}\right)\left(1+\frac{y^2}{x^2}\right)\ge2\sqrt{\frac{x^2}{y^2}}.2\sqrt{\frac{y^2}{x^2}}=2.\frac{x}{y}.2.\frac{y}{x}=4\) ( Cosi )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
...