Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+xy-x^2+y=1\Leftrightarrow xy+y=x^2+1-x\)
\(\Leftrightarrow y\left(x+1\right)=x^2-x+1\)
Với \(x=-1\Rightarrow x^2-x+1=0\) (vô lý vì \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\))
Với \(x\ne-1\Rightarrow y=\frac{x^2-x+1}{x+1}\)
Do \(y=\frac{x^2+x-2\left(x+1\right)+3}{x+1}=x-2+\frac{3}{x+1}\in Z\)
\(\Rightarrow\frac{3}{x+1}\in Z\)ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y | 1 | -7 | 1 | -7 |
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
b.x+y+xy=3
=>x+y(x+1)=3
=>(x+1)+y(x+1)=4
=>(y+1)(x+1)=4
ta có bảng sau
x+1 | -1 | 1 | -4 | 4 | 2 | -2 |
y+1 | -4 | 4 | -1 | 1 | 2 | -2 |
x | -2 | 0 | -5 | 3 | 1 | -3 |
y | -5 | 3 | -2 | 0 | 1 | -3 |
a.(x2+5)2+4 nhỏ nhất =>(x2+5)2 nhỏ nhất=>x2+5 nhỏ nhất=>x2+5\(\ge\)0+5=5=>x2+5 nhỏ nhất =5
=>GTNN của (x2+5)2+4=52+4=25+4=29
x+xy-\(x^2\)+y=1
<=>xy+y=\(x^2\)-x+1(*)
.Nếu x+1=0=>x=-1=>0.y=3->vô lí
Nếu x+1\(\ne\)0=>y=\(\frac{x^2-x+1}{x+1}=\frac{x^2+x-2x+1}{x+1}=\frac{x^2+x}{x+1}+\frac{-2x+1}{x+1}\)=\(\frac{x\left(x+1\right)}{x+1}+\frac{-2x+1}{x+1}\)
=x+\(\frac{-2x-2+3}{x+1}=x+\frac{-2\left(x+1\right)}{x+1}+\frac{3}{x+1}=x-2+\frac{3}{x+1}\in Z\)<=>\(\frac{3}{x+1}\in Z\Leftrightarrow x+1\inƯ\left(3\right)\)
phần này tự làm vì nó dễ
học tốt!