Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x/2 =y/3=z/4 nên x2/4 = y2/ 9 = 2z2/32
áp dụng .............................
=> x2/4 = y2 /9 = 2z2 /32 = x2-y2+2z2 / 4 -9 +32 = 108 / 27 =4
=> x2 = 16 => x = 4
y2 =36 => y = 6
2z2 = 128 => z =8
đặt x/2 = y/3 = z/4 =k ( k khác 0 )
=> x = 2k
y=3k
z =4k
=> xyz = 2k3k4k = 24k = -480 => k= -20
=> x=-40
y=-60
z=-80
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\frac{108}{27}=4\)
vậy:
x/2=4 =>x=4.2=8
y/3=4 =>y=4.3=12
z/4=4 =>z=4.4=16
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\) \(\left(k\ne0\right)\)
=> x= 2 ;y= 3k ;z= 4k
Ta có:
x2 - y2 + 2z2 =108
=>(2k)2 -(3k)2 +2(4k)2 =108
=>4k2 -9k2 +2(16k2) =108
=>4k2 -9k2 +32k2 =108
=>k2(4 -9 +32) =108
=>k2.27 =108
=>k2 =108: 27
=>k2 =4
=>\(k=\pm2\)
TH1: k=2
=> x=2.2=4
y=3.2=6
z=4.2=8
TH2: k=-2
=> x=2.(-2)=-4
y=3.(-2)=-6
z=4.(-2)=-8
Vậy x=4; y=6; z=8
hoặc x=-4; y=-6; z=-8
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=a\left(a\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2a\\y=3a\\z=4a\end{cases}}\)
Ta có : \(x^2-y^2+2z^2=108\)
\(\Rightarrow\left(2a\right)^2-\left(3a\right)^2+2\left(4a\right)^2=108\)
\(\Leftrightarrow4a^2-9a^2+32a^2=108\)
\(\Leftrightarrow27a^2=108\)
\(\Leftrightarrow a^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=2\end{cases}}\)
+) Với \(a=-2\Leftrightarrow\hept{\begin{cases}x=2a=-4\\y=3a=-6\\z=4a=-8\end{cases}}\)
+) Với \(a=2\Leftrightarrow\hept{\begin{cases}x=2a=4\\y=3a=6\\z=4a=8\end{cases}}\)
Vậy ...
( p/s : có bn làm oy nhưng mk đang rảnh nên làm nhá :) đừng chửi :)))
B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)
\(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)
TỪ ĐÓ SUY RA Y=9;Z=15
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
b)ta có: \(\frac{x}{5}=\frac{y}{4}=\frac{z}{-6}\Rightarrow\frac{x^3}{125}=\frac{y^3}{64}=\frac{z^3}{-216}=\frac{x^3}{125}=\frac{y^3}{64}=\frac{3z^3}{-648}\)
ADTCDTSBN
có: \(\frac{x^3}{125}=\frac{3z^3}{-648}=\frac{x^3+3z^3}{125+\left(-648\right)}=\frac{-14121}{-523}=27\)
=> x3/125 = 27 => x3 = 3 375 => x = 15
y3/64 = 27 => y3 = 1 728 => y = 12
z3/-216 =27 => z3 = -5 832 => z3 = -18
KL:...
câu c thì mk ko bk! sr bn nha!
a) ta có: \(\frac{x}{y}=\frac{7}{20}\Rightarrow x20=y7\Rightarrow\frac{x}{7}=\frac{y}{20}\Rightarrow\frac{x}{49}=\frac{y}{140}\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow y3=z7\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{140}=\frac{z}{60}\)
\(\Rightarrow\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\)
ADTCDTSBN
có: \(\frac{x}{49}=\frac{y}{140}=\frac{z}{60}=\frac{x-y+z}{49-140+60}=\frac{-155}{-31}=5\)
=> x/49 = 5 => x = 245
y/140 = 5 => y = 700
z/60 = 5 => z = 300
KL:...
Ta có \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> x2 = 9.4 = 36
=> x = \(\pm6\)
y2 = 4.16 = 64
=> y = \(\pm8\)
Vậy các cặp (x;y) thỏa mãn là (6 ; 8) ; (-6;-8) ; (-6 ; 8) ; (6 ; - 8)
b) Ta có \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)
=> x = 9 ; y = 9.2 = 18 ; z = 3.9 = 27
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{2z^2}{2\cdot4^2}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
\(\Rightarrow\frac{x^2-y^2+2z^2}{4-9+32}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\) mà x2 - y2 + 2z2 = 108
\(\Rightarrow\frac{108}{27}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
\(\Rightarrow4=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
\(\Rightarrow\hept{\begin{cases}x^2=4\cdot4=16\\y^2=9\cdot4=36\\z^2=4\cdot16=64\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm6\\z=\pm8\end{cases}}\)
vậy_
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\)\(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x=4\)
\(\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=6\)
\(\frac{z^2}{16}=4\Rightarrow z^2=64\Rightarrow z=8\)
vậy....
k mik nhé
hok tốt