Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x=3y\)=> \(\frac{x}{3}=\frac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{10}{5}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{2}=2\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=4\end{cases}}\)
\(3x=4y\)=> \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{2x}{8}=\frac{3y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{3y}{9}=\frac{2x+3y}{8+9}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{3}=2\end{cases}}\)=> \(\hept{\begin{cases}x=8\\y=6\end{cases}}\)
\(x:2=y:(-5)\)=> \(\frac{x}{2}=\frac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left[-5\right]}=\frac{7}{7}=1\)
=> \(\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{-5}=1\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
a,Ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
Suy ra :\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x-15k;y=10k;z=8k\)
Ta có : \(4(15k)-3(10k)+5(8k)=7\)
\(\Rightarrow60k-30k+40k=7\)
\(\Rightarrow70k=7\). Suy ra \(k=\frac{1}{10}\)
Ta có : \(x=\frac{1}{10}\cdot15=\frac{3}{2}\)
\(y=\frac{1}{10}\cdot10=1\)
Mình chỉ giải có chừng này thôi
Câu b mk làm sau
\(xy+2x-y=7\)
\(xy+2x=7+y\)
\(x\left(y+2\right)=7+y\)
\(x=\frac{7+y}{y+2}\)
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
1)\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}=\frac{2x+3y}{8+9}=\frac{34}{17}=2\)
\(\Rightarrow x=4.2=8;y=2.3=6\)
2)\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2+5}=\frac{7}{7}=1\)
\(\Rightarrow x=2;y=-5\)
a) Ta có :
\(\frac{x}{4}=\frac{y}{3}\)
\(=\frac{2x}{8}=\frac{3y}{9}\)
Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{2x}{8}=\frac{3y}{9}=\frac{2x+3y}{8+9}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{2x}{8}=2\\\frac{3x}{9}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=2.8\div2\\y=2.9\div3\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=6\end{cases}}}\)
Vậy ....
b) Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-7}{2-\left(-5\right)}=\frac{7}{7}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{-5}=1\end{cases}\Rightarrow\hept{\begin{cases}x=1.2\\y=1.\left(-5\right)\Rightarrow\end{cases}}\hept{\begin{cases}x=2\\y=-5\end{cases}}}\)
Vậy ...