Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\left|x-2015\right|+\left|2018-x\right|+\left|x-2016\right|+\left|y-2017\right|=3\)
Áp dụng tính chất dấu giá trị tuyệt đối, t acó
\(\left|x-2015\right|+\left|2018-x\right|\ge\left|2018-x+x-2015\right|=3\)
mà \(\left|y-2017\right|\ge0;\left|x-2016\right|\ge0\)
=>VT>=3
dấu = xảy ra <=>y=2017 và x=2016
Ta có :
\(x=\frac{2016^{2017}+1}{2016^{2016}+1}\)
\(\frac{1}{2016}x=\frac{2016^{2017}+1}{2016^{2017}+2016}=\frac{2016^{2017}+2016-2015}{2016^{2017}+2016}\)
\(\Rightarrow\frac{1}{2006}x=1-\frac{2015}{2016^{2017}+2016}\)
Ta lại có :
\(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)
\(\Rightarrow\frac{1}{2016}y=\frac{2016^{2016}+1}{2016^{2016}+2016}=\frac{2016^{2016}+2016-2015}{2016^{2016}+2016}\)
\(\Rightarrow\frac{1}{2016}y=1-\frac{2015}{2016^{2016}+2016}\)
Mà \(\frac{2015}{2016^{2017}+2016}< \frac{2015}{2016^{2016}+2016}\)(so sánh mẫu)
\(\Rightarrow1-\frac{2015}{2016^{2017}+2016}>1-\frac{2015}{2016^{2016}+2016}\)
\(\Rightarrow\frac{1}{2016}x>\frac{1}{2016}y\)
\(\Rightarrow x>y\)
DÀI QUÁ KHÔNG TÍNH ĐƯỢC. CÁI NÀY CÓ MÀ ĐI HỎI THẦN ĐỒNG VỀ MÔN TOÁN ĐI
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có:
\(x=\dfrac{2016^{2017}+1}{2016^{2016}+1}< 1\)
\(\Rightarrow x< \dfrac{2016^{2017}+1+2015}{2016^{2016}+1+2015}\Rightarrow x< \dfrac{2016^{2017}+2016}{2016^{2016}+2016}\Rightarrow x< \dfrac{2016\left(2016^{2016}+1\right)}{2016\left(2016^{2015}+1\right)}\Rightarrow x< \dfrac{2016^{2016}+1}{2016^{2015}+1}=y\)
\(\Rightarrow x< y\)
Ta có: (x+2015)^2016>=0(với mọi x)
|y-2017|>=0(với mọi y)
Do đó, (x+2015)^2016+|y-2017|>=0(với mọi x,y)
mà (x+2015)^2016+|y-2017|=0
nên (x+2015)^2016=0 và |y-2017|=0
x+2015=0 y-2017=0
x=0-2015 y=0+2017
x=-2015 y=2017
Vậy x=-2015 và y=2017 thì x,y thỏa mãn đề