Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4