Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5x^2+6x^2+3y+7y=11x^2+10y
B=7x^3+6x^3+6y+5y+36=13x^3+11y+36
C=-8x^5-x^5+3y^4-10y^4=-9x^5-7y^4
C=x^2-5x^2+y^2-6y^2=-4x^2-5y^2
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
a, (\(\dfrac{-5}{9}\)x^6y^4).(\(\dfrac{9}{10}\)x^3y)
=\(\dfrac{-1}{2}\)x^9y^5
b, thay x=-1; y=2 vào biểu thức ta được
\(\dfrac{-1}{2}\).-1^9.2^5
=\(\dfrac{-1}{2}\).(-1).32
=16
vậy với x=-1 y=2 biểu thức ta được 16
+) Xét \(\frac{2x+1}{5}\)= \(\frac{4y-5}{9}\)= \(\frac{2x+4y-4}{7}=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow x=\frac{-1}{2}\)
+) Xét \(2x+4y-4\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+1+4y-4}{14}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow14=7x\)
\(\Rightarrow x=2\)
Vậy \(x\in\left\{\frac{-1}{2};2\right\}\)
P/s: Vì lười nên chị viết tắt nha.
1) Áp dụng tính chất... ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3=-12\\y=-4.5=-20\end{cases}}\)
2) Có: \(\frac{x}{y}=\frac{9}{11}\Rightarrow\frac{x}{9}=\frac{y}{11}\)
Áp dụng tính chất... ta có: \(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.9=27\\y=3.11=33\end{cases}}\)
3) tương tự 2)
4), 8) và 9) tương tự 1)
5) Có: \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất... (Tương tự các phần trên).
6) và 7) tương tự 5)
10) 4x = 5y phải không ? Vậy vẫn tương tự 5)
\(A=\frac{2\left|7x+5\right|+11}{\left|7x+5\right|+4}\ge\frac{11}{4}\)
\(MaxA=\frac{11}{4}\Leftrightarrow7x+5=0\)
\(\Rightarrow x=\frac{-5}{7}\)
theo tính chất dãy tỉ số bằng nhau ta có: \(\frac{\left(7x-5\right)+\left(6x-4\right)}{6+4}=7x+6y-9\Leftrightarrow\frac{7x+6y-9}{10}=7x+6y-9\Leftrightarrow63x+54y-81=0\)
lại có: \(\frac{7x-5}{6}=\frac{6y-4}{4}\Rightarrow28x-20=36y-24\Rightarrow7x=9y-1\)
nên \(63x+54y-81=0\Leftrightarrow7x\cdot9+54y-81=0\Leftrightarrow9\left(9y-1\right)+54y-81=0\Leftrightarrow81y-9+54y-81=0\Leftrightarrow135y-90=0\Leftrightarrow y=\frac{90}{135}=\frac{2}{3}\Rightarrow x=\frac{9y-1}{7}=\frac{5}{7}\)