K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x\left(2y-14\right)-8\left(y-7\right)=0\)

=>\(2x\cdot2\cdot\left(y-7\right)-8\left(y-7\right)=0\)

=>\(4x\left(y-7\right)-8\left(y-7\right)=0\)

=>\(\left(4x-8\right)\left(y-7\right)=0\)

=>\(\left\{{}\begin{matrix}4x-8=0\\y-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=7\end{matrix}\right.\)

2x(2y-14)-8(y-7)=0

=>\(4x\left(y-7\right)-8\left(y-7\right)=0\)

=>\(\left(y-7\right)\left(4x-8\right)=0\)

=>\(\left\{{}\begin{matrix}y-7=0\\4x-8=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=7\\x=2\end{matrix}\right.\)

7 tháng 12 2023

 4x (y - 7) - 8(y-7) =0

(4x-8) (y-7)=0
x=2 y =7

 

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

\(x^2+y^2=0\)

Mà \(x^2\ge0;y^2\ge0\)nên \(x^2+y^2\ge0\)

(Dấu "="\(\Leftrightarrow x=y=0\))

7 tháng 1 2021

a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0

<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0

* 1-3y=0 <=> y=1/3

* 2y - 10= 0 <=> y=5

vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5

b, Phương trình nhận y=2 làm nghiệm nên ta có:

(2x - 6 + 7)(3x+ 4 - 1)=0

<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0

<=> x=-1/ 2 hoặc x=-1

vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1

7 tháng 1 2021

a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0

<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0

* 1-3y=0 <=> y=1/3

* 2y - 10= 0 <=> y=5

vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5

b, Phương trình nhận y=2 làm nghiệm nên ta có:

(2x - 6 + 7)(3x+ 4 - 1)=0

<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0

<=> x=-1/ 2 hoặc x=-1

vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1

22 tháng 7 2023

a) \(x+2y+\left(x-y\right)\)

\(=x+2y+x-y\)

\(=2x+y\)

b) \(2x+y-\left(3x-5y\right)\)

\(=2x+y-3x+5y\)

\(=-x+6y\)

c) \(3x^2-4y^2+6xy+7+\left(-x^2+y^2-8xy+9x+1\right)\)

\(=3x^2-4y^2+6xy+7-x^2+y^2-8xy+9x+1\)

\(=2x^2-3y^2-2xy+9x+8\)

d) \(4x^2y-2xy^2+8-\left(3x^2y+9xy^2-12xy+6\right)\)

\(=4x^2y-2xy^2+8-3x^2y-9xy^2+12xy-6\)

\(=x^2y-11xy^2+2+12xy\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

Ta có:

\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)-15xy\left(x-y\right)+1\)

=\(0+0+0+1=1\)

9 tháng 9 2017

\(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\dfrac{2015}{2016}\right)^0\)

\(=2\left(x-y\right)+13x^3y^2\left(x-y\right)-15xy\left(x-y\right)\)

\(=0+0+1=1\)

~^~

a: \(=49x^2-64-10\left(4x^2+12x+9\right)+5x\left(9x^2-12x+4\right)+4x\left(x^2-10x+25\right)\)

\(=49x^2-64-40x^2-120x-90+45x^3-60x^2+20x+4x^3-40x^2+100x\)

\(=49x^3-91x^2-154\)

b: \(=27x^3+189x^2+441x+343-125x^3+y^3+x^3+6x^2y+12xy^2+8y^3\)

\(=-97x^3+189x^2+441x+6x^2y+12xy^2+9y^3+343\)