Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
Ta có :
\(x+2x+3x+...+2020x=2020.2021\)
\(\Leftrightarrow x\left(1+2+3+...+2020\right)=2020.2021\)
\(\Leftrightarrow x.\frac{\left(2020+1\right).2020}{2}=2021.2020\)
\(\Leftrightarrow x.\frac{2021.2020}{2}=2021.2020\)
\(\Leftrightarrow x=2\)
Vậy x=2
\(x+2x+3x+...+2020x=2020\cdot2021\)
\(x\left(1+2+3+...+2020\right)=2020\cdot2021\)
1 + 2 + 3 ... + 2020
Số số hạng :
\(\left(2020-1\right):1+1=2020\)
Tổng :
\(\left(2020+1\right)\cdot2020:2=2021\cdot1010\)
\(2021\cdot1010\cdot x=2020\cdot2021\)
\(1010x=2020\)
\(x=2\)
Ta có : \(\left(2020.x^2+2021\right).\left(x^2-1\right).\left(2.x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2020.x^2+2021=0\\x^2-1=0\\2.x+=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\notinℝ\\x=\pm1\\x=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x=\left\{\pm1;-\frac{1}{2}\right\}\)
x−42021+x−32020=x−22019+x−12018x−42021+x−32020=x−22019+x−12018
⇔ x−42021+x−32020−x−22019−x−12018=0x−42021+x−32020−x−22019−x−12018=0
⇔ (1+x−42021)+(1+x−32020)−(1+x−22019)−(1+x−12018)=0(1+x−42021)+(1+x−32020)−(1+x−22019)−(1+x−12018)=0⇔ x+20172021+x+20172020−x+20172019−x+20172018=0x+20172021+x+20172020−x+20172019−x+20172018=0
⇔ (x+2017)(12021+12020−12019−12018)=0(x+2017)(12021+12020−12019−12018)=0
⇔ x + 2017 = 0
⇔ x = -2017
\(\frac{x-1}{2020}+\frac{x-2}{2021}=\frac{x+1}{2018}+\frac{x+2}{2017}\)
\(\Leftrightarrow\frac{x-1}{2020}+1+\frac{x-2}{2021}-1=\frac{x+1}{2018}+1+\frac{x+2}{2017}+1\)
\(\Leftrightarrow\frac{x+2019}{2020}+\frac{x+2019}{2021}=\frac{x+2019}{2018}+\frac{x+2019}{2017}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
mà \(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\ne0\)
\(\Leftrightarrow x+2019=0\)
\(\Leftrightarrow x=-2019\)
x + ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ( x + 4 ) = 2020
x + x + 1 + x + 2 + x + 3 + x + 4 = 2020
5x + ( 1 + 2 + 3 + 4 ) = 2020
5x + 10 = 2020
5x = 2020 - 10
5x = 2010
x = 2010 : 5
x = 402
Giải:
Ta có: x+(x+1)+(x+2)+(x+3)+(x+4)=2020
=>x+x+1+x+2+x+3+x+4=2020
=>(x+x+x+x+x)+(1+2+3+4)=2020
=>5x+10=2020
=>5x=2020-10
=>5x=2010
=>x=2010:5
=>x=402
Vậy x=402
B=5+2(x-2019)2020
Vì (x-2019)2020 ≥0
=>5+(x-2019)2020 ≥5
Để B đạt Min
=>x-2019=0
=>x=2019
Vậy MinB=5 <=>x=2019
(x + 1) + (x + 2) + ... + (x + 2020) = 0
=> x + 1 + x + 2 + ... + x + 2020 = 0
=> 2020x + [(1 + 2020) + (2 + 2019) + ... + (1010 + 1011) = 0
=> 2020x + (2021 + 2021 + ... + 2021) = 0
=> 2020x + 2021.1010 = 0
=> 2020x + 2041210 = 0
=> 2020x = -2041210
=> x = 2021/2
a) Ta có: x-7=x-5-2
Để x-7 chia hết cho x-5 thì x-5-2 chia hết cho x-5
=> 2 chia hết cho x-5
Mà x nguyên => x-5 nguyên
=> x-5 thuôc Ư (2)={-2;-1;1;2}
Ta có bảng
x-5 | -2 | -1 | 1 | 2 |
x | -3 | 4 | 6 | 7 |
b) x2-5x=0
<=> x(x-5)=0
<=> x=0 hoặc x-5=0
<=> x=0 hoặc x=5
Vậy x=0; x=5
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)
\(\left|x\right|+\left|x+1\right|+\left|x+2\right|+...+\left|x+2020\right|=2020x\)(1)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
(1) tương đương với:
\(x+x+1+x+2+...+x+2020=2020x\)
\(\Leftrightarrow x+\frac{2020.2021}{2}=0\)
\(\Leftrightarrow x=--2041210\)(loại)
Vậy phương trình đã cho vô nghiệm.