Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
Ta có: |2x - 1| = |1 - 2x|
Lại có: \(\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)
Mà \(\left|2x+3\right|+\left|1-2x\right|=\frac{8}{3\left(x+1\right)^2+2}\)
\(\Rightarrow\frac{8}{3\left(x+1\right)^2+2}=4\)\(\Rightarrow3\left(x+1\right)^2+2=8\div4\)\(\Rightarrow3\left(x+1\right)^2+2=2\)\(\Rightarrow3\left(x+1\right)^2=2-2=0\)\(\Rightarrow\left(x+1\right)^2=0\)\(\Rightarrow x+1=0\)\(\Rightarrow x=-1\)
Sửa bài:
\(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\) với mọi x
\(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{3.0+2}=4\)với mọi x
=> \(\left|2x+3\right|+\left|2x-1\right|\ge\frac{8}{3\left(x+1\right)^2+2}\)với mọi x
=> \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)
<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow}x=-1\)
Vậy S = { -1 }
1. A=\(\frac{x^2-1}{x^2+1}\)
=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)
để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN
mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0.
khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0
Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)
\(=\left|x+2017\right|+\left|2-x\right|\)
\(\ge\left|x+2017+2-x\right|\)
\(=2019\)
Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)
\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)
Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)
Bài 6:
\(M=\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(M\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)
Dấu " = " khi \(\left\{{}\begin{matrix}2002-x\ge0\\x-2001\ge0\end{matrix}\right.\Rightarrow2001\le x\le2002\)
Vậy \(MIN_M=1\) khi \(2001\le x\le2002\)
Bài 8:
a, Ta có: \(A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)
Vậy \(MIN_A=3,7\) khi x = 4,3
b, \(B=\left|3x+8,4\right|-24,2\ge-24,2\)
Dấu " = " khi \(\left|3x+8,4\right|=0\Rightarrow x=-2,3\)
Vậy \(MIN_B=-24,2\) khi x = -2,3
c, Ta có: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow C\ge17,5\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-1,5\end{matrix}\right.\)
Vậy \(MIN_C=17,5\) khi \(x=\dfrac{3}{4}\) và y = -1,5
Bài 9:
a, \(D=5,5-\left|2x-1,5\right|\le5,5\)
Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)
Vậy \(MIN_D=5,5\) khi x = 0,75
b, c tương tự