Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}\ge0\)với \(\forall x;y;z\)
Mà \(\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}\le0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-5}{2}\\x=\frac{3}{4}\end{cases}}}\)
Vậy \(x=\frac{5}{3};y=\frac{-2}{5};z=\frac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Sửa đề \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4x-3\right)^{20}\le0\)
Mà \(\left|3x-5\right|\ge0\);\(\left(2y+5\right)^{208}\ge0;\left(4x-3\right)^{20}\ge0\)
Do đó \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Ta có: \(\left|3x-5\right|\ge0\forall x\)
\(\left(2y+5\right)^{20}\ge0\forall y\)
\(\left(4z-3\right)^{206}\ge0\forall z\)
Do đó: \(\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{3};y=-\dfrac{5}{2};z=\dfrac{3}{4}\)
Xét \(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{20}\ge0\)
\(\left(4z-3\right)^{206}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}\ge0\)(1)
Mà: \(\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}\le0\)(2)
(1)(2) suy ra: \(\left|3x-5\right|+\left(2y+5\right)^{20}+\left(4z-3\right)^{206}=0\)
\(\hept{\begin{cases}3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\\\left(2y+5\right)^{20}=0\Rightarrow2y+5=0\Rightarrow2y=-5\Rightarrow y=-\frac{5}{2}\\\left(4z-3\right)^{206}=0\Rightarrow4z-3=0\Rightarrow4z=3\Rightarrow z=\frac{3}{4}\end{cases}}\)
Vậy............
a) Câu này đề đúng phải là \(\left|x+1\right|+\left|x+5\right|=3x\)
Có: \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|x+5\right|\ge0\end{matrix}\right.\forall x.\)
Do đó \(3x\ge0\Rightarrow x\ge0.\)
Lúc này ta có: \(\left(x+1\right)+\left(x+5\right)=3x\)
\(\Rightarrow\left(x+x\right)+\left(1+5\right)=3x\)
\(\Rightarrow2x+6=3x\)
\(\Rightarrow3x-2x=6\)
\(\Rightarrow1x=6\)
\(\Rightarrow x=6:1\)
\(\Rightarrow x=6\)
Vậy \(x=6.\)
Chúc bạn học tốt!
thanks nhưng mink chép đúng đề mà