K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

\(\left(3x-1\right)^3=\left(\frac{2}{3}\right)^3\)

=> 3x -1 = 2/3

3x = 5/3

x = 5/9

học tốt ^^

9 tháng 8 2018

\(\left(x^4\right)^2=x^{12-5}\)

\(x^8-x^7=0\)

\(x^7\cdot x-x^7=0\)

\(x^7\cdot\left(x-1\right)=0\)

+) x^7 = 0 => x = 0

+) x -1 = 0 => x = 1

Vậy,...........

học tốt ^^

22 tháng 11 2019

\(a.\frac{x-1}{x+2}=\frac{4}{5}\)

\(\Rightarrow\frac{x+2-3}{x+2}=\frac{4}{5}\)

\(\Rightarrow1-\frac{3}{x+2}=\frac{4}{5}\)

\(\Rightarrow\frac{3}{x+2}=1-\frac{4}{5}\)

\(\Rightarrow\frac{3}{x+2}=\frac{1}{5}\)

\(\Rightarrow\frac{3}{x+2}=\frac{3}{15}\Rightarrow x+2=15\)

\(\Rightarrow x=13\)( thỏa mãn )

a)Ta có:

\(\frac{x-1}{x+2}=\frac{4}{5}\Leftrightarrow5\left(x-1\right)=4\left(x+2\right)\)

\(\Leftrightarrow5x-5=4x+8\)

\(\Leftrightarrow5x-4x=8+5\)

\(\Leftrightarrow x=13\)

b)Ta có:

\(2^{2x+1}+4^{x+3}=2^{2x+1}+2^{2x+6}=2^{2x+1}\left(1+2^5\right)=2^{2x+1}.33=264\Leftrightarrow2^{2x+1}=8=2^3\)\(\Rightarrow2x+1=3\Leftrightarrow2x=2\Leftrightarrow x=1\)

c)Ta có:

\(\frac{x^2}{-8}=\frac{27}{x}\Leftrightarrow x^3=-8.27=-216\Leftrightarrow x=-6\)

d)Ta có:

\(\frac{x+7}{-20}=\frac{-5}{x+7}\Leftrightarrow\left(x+7\right)^2=\left(-20\right)\left(-5\right)=100\Leftrightarrow\left[{}\begin{matrix}x+7=10\\x+7=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-17\end{matrix}\right.\)e)Ta có:

\(\frac{x}{-8}=\frac{2}{-x^3}\Leftrightarrow x.\left(-x^3\right)=-8.2\)

\(\Leftrightarrow-x^4=-16\Leftrightarrow x^4=16\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

18 tháng 5 2016

1) \(x=\frac{99}{196}\)

2) \(x=-2\)

3) \(x\approx-0,59\)

giup mk giải rõ dc ko

a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}+\dfrac{5}{48}=\dfrac{6}{48}=\dfrac{1}{8}\)

\(\Leftrightarrow-\dfrac{1}{12}< x< \dfrac{1}{8}\)

=>x=0

c: \(\Leftrightarrow x=\dfrac{-1}{2}\cdot\dfrac{1}{4}=\dfrac{-1}{8}\)

d: \(\Leftrightarrow x^8=x^7\)

=>x(x-1)=0

=>x=0(loại) hoặc x=1(nhận)

e: \(\Leftrightarrow3^x=\dfrac{3^{10}}{3^9}=3\)

hay x=1

f: =>x-1=20

hay x=21

\(\Leftrightarrow\dfrac{1}{2}\left(x^2-4x+4\right)-\dfrac{13}{3}\left(x^2+6x+9\right)=\dfrac{1}{4}\left(x^2-3x+2\right)-2\left(9x^2+3x-2\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}-2x+2-\dfrac{13}{3}x^2-26x-39=\dfrac{1}{4}x^2-\dfrac{3}{4}x+\dfrac{1}{2}-18x^2-6x+4\)

\(\Leftrightarrow x^2\cdot\dfrac{167}{12}-\dfrac{85}{4}x-\dfrac{83}{2}=0\)

\(\Leftrightarrow167x^2-255x-498=0\)

\(\text{Δ}=\left(-255\right)^2-4\cdot167\cdot\left(-498\right)=397689\)

Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{255-\sqrt{397689}}{334}\\x_2=\dfrac{255+\sqrt{397689}}{334}\end{matrix}\right.\)

13 tháng 7 2016

\(\frac{\left(2-3x\right)^2}{3}-\frac{\left(1+2x\right)^2}{2}=\frac{3}{4}-2\left(x-1\right)\left(x+2\right)+x\left(1+x\right)\)

\(\frac{2^2-12x-3x^2}{3}-\frac{1^2+4x+2x^2}{2}=\frac{3}{4}-\left(x^2+x-2\right)+3x\)

\(\frac{2.\left(4-12x-3x^2\right)}{6}-\frac{3.\left(1+4x+2x^2\right)}{6}=\frac{11}{4}-x^2+2x\)

\(\frac{8-24x-6x^2}{6}-\frac{3+12x+2x^2}{6}=\frac{11}{4}-x^2+2x\)

\(\frac{8-24x-6x^2-3-12x-2x^2}{6}=\frac{11}{4}-x^2+2x\)

\(\frac{5-36x-8x^2}{6}=\frac{11}{4}-x^2+2x\)

Chỗ đây thì mk chịu

 

 

 

\(\Leftrightarrow3\left(x^2-4x+4\right)-\dfrac{5}{4}\left(9x^2+6x+1\right)=\dfrac{4}{3}\left(-x^2+4x-3\right)-\dfrac{7}{6}x\left(x-3\right)\)

\(\Leftrightarrow3x^2-12x+12-\dfrac{45}{4}x^2-\dfrac{15}{2}x-\dfrac{5}{4}=-\dfrac{4}{3}x^2+\dfrac{16}{3}x-4-\dfrac{7}{6}x^2+\dfrac{7}{2}x\)

\(\Leftrightarrow x^2\cdot\dfrac{-33}{4}-\dfrac{39}{2}x+\dfrac{43}{4}+\dfrac{5}{2}x^2-\dfrac{53}{6}x+4=0\)

\(\Leftrightarrow x^2\cdot\dfrac{-23}{4}-\dfrac{85}{3}x+\dfrac{59}{4}=0\)

\(\Leftrightarrow12\left(\dfrac{-23}{4}x^2-\dfrac{85}{3}x+\dfrac{59}{4}\right)=0\)

\(\Leftrightarrow-69x^2-340x+177=0\)

\(\Leftrightarrow69x^2+340x-177=0\)

\(\text{Δ}=340^2-4\cdot69\cdot\left(-177\right)=164452\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-170-\sqrt{41113}}{69}\\x_2=\dfrac{-170+\sqrt{41113}}{69}\end{matrix}\right.\)