\(x\in Z\):

\(\left(|x|-3\right).\left(x^2+4\right)\le4\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

/hoi-dap/question/712432.html bạn tham khảo ở đây nha mình làm ở đây Trần Thùy Linh A1

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

18 tháng 7 2019

\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi \(x=\frac{3}{4};y=\frac{2}{5};z=-\frac{23}{20}\)

18 tháng 7 2019

Do \(\left|x+\frac{1}{2}\right|\ge0;\left|y-\frac{3}{4}\right|\ge0;\left|z-1\right|\ge0\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\)

Dấu "=" xảy ra khi \(x=-\frac{1}{2};y=\frac{3}{4};z=1\)

4 tháng 2 2018

lu ngu

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

1 tháng 7 2018

\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)

\(A=x^4-x-x^4-x^2-5x+5\)

\(A=-x^2-6x+5\)

Vậy \(A=-x^2-6x+5\)

\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)

\(B=4x^2+8x-8x-32-4\)

\(B=4x^2-36\)

Vậy \(B=4x^2-36\)

\(b)\) Ta có : 

\(A=-x^2-6x+5\)

\(-A=x^2+6x-5\)

\(-A=\left(x^2+6x+9\right)-14\)

\(-A=\left(x+3\right)^2-14\ge-14\)

\(A=-\left(x+3\right)^2+14\le14\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)

\(\Leftrightarrow\)\(x+3=0\)

\(\Leftrightarrow\)\(x=-3\)

Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)

Chúc bạn học tốt ~ 

25 tháng 7 2016

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)