Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
Đặt A= 7x-8/2x-3
=>2A=14x-16/2x-3=7.(2x-3)+5/2x-3=7+ (5/2x-3) có giá trị lớn nhất <=>5/2x-3 lớn nhất
<=>2x-3 dương nhỏ nhất
<=>2x-3=1
<=>2x=4<=>x=2
Với x=2=>A=14-8/4-3=6/1=6
vậy max A =6 <=>x=2
A=\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)
\(A=\frac{5x+9}{x+1}=\frac{5x+5+4}{x+1}\)\(ĐKXĐ:x\ne-1\)
\(=\frac{5x+5}{x+1}+\frac{4}{x+1}\)
\(=\frac{5\left(x+1\right)}{x+1}+\frac{4}{x+1}\)
\(=5+\frac{4}{x+1}\)
\(\Rightarrow A=5+\frac{4}{x+1}\)
Để \(A\in Z\Rightarrow5+\frac{4}{x+1}\in Z\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x=\left\{0;1;3;-2;-3;-5\right\}\)
\(\frac{2x+1}{x-3}=\frac{2x-6+7}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}\)\(=\frac{2\left(x-3\right)}{x-3}+\frac{7}{x-3}=2+\frac{7}{x-3}\)
\(\Rightarrow\)\(x-3\inƯ\left(7\right)=\left\{1;7\right\}\)
\(\Rightarrow x-3=1\Rightarrow x=4\)
\(x-3=7\Rightarrow x=10\)
Vậy \(x\in\left\{4;10;2\right\}\)
NHỚ TK NHA