Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ cần để các thừa số ra ngoài rồi nhân các số mà bằng khoảng cách của mẫu lên tử là giải được
\(\Leftrightarrow\frac{-2}{17}\le\frac{x}{17}\le\frac{2}{17}\Rightarrow x\in\left(-2;-1;0;1;2\right)\)
\(\Leftrightarrow\frac{-1}{24}\le\frac{x}{24}\le\frac{5}{24}\Rightarrow x\in\left(-1;0;1;2;3;4;5\right)\)
2 câu sau tự làm nha
\(-\frac{5}{17}+\frac{3}{17}\le\frac{x}{17}\le\frac{13}{17}+-\frac{11}{17}\)
\(\frac{-2}{17}\le\frac{x}{17}\le\frac{2}{17}\)
=> \(x\in\left\{-2;-1;0;1;2\right\}\)
1/4 . 2/6 . 3/8 . ... .30/62 .31/64 = 2^x
(1/2 . 1/2).(2/3 . 1/2).(3/4 . 1/2). ... .(30/31 . 1/2).(31/32 . 1/2) = 2^x
(1/2.1/2. ... .1/2).(1/2 . 2/3 . 3/4. ... .30/31 . 31/32) = 2^x
(31 số 1/2)
(1/2)^31. = 2^x
=> 0=x+36
x=0-36
x=-36
Vậy x=-36
Theo mk nghĩ,mk làm đúng nha .Tk cho mk
Để mk sửa phần này một chút
\((\frac{1}{2})^{31}\cdot\frac{1\cdot2\cdot3.....30\cdot31}{2\cdot3\cdot4.....31\cdot32}=2^x\)
\(\frac{1^{31}}{2^{31}}\cdot\frac{1}{32}=2^x\)
\(\frac{1}{2^{31}}\cdot\frac{1}{2^5}=2^x\)
\(\frac{1}{2^{36}}=2^x\)
\(1=2^x\cdot2^{36}\)
\(2^0=2^x+36\)
Rồi bn tự suy luận nha
a) \(x+\left(-7\right)=-20\)
\(\Rightarrow x=-20+7\)
\(\Rightarrow x=-13\)
Vậy \(x=-13\)
b) \(8-x=-12\)
\(\Rightarrow x=8-\left(-12\right)\)
\(\Rightarrow x=20\)
Vậy \(x=20\)
c) \(|x|-7=-6\)
\(\Rightarrow|x|=-6+7\)
\(\Rightarrow|x|=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy \(x\in\left\{1;-1\right\}\)
d) \(5^2.2^2-7.|x|=65\)
\(\Rightarrow\left(5.2\right)^2-7.|x|=65\)
\(\Rightarrow10^2-7.|x|=65\)
\(\Rightarrow100-7.|x|=65\)
\(\Rightarrow7.|x|=35\)
\(\Rightarrow|x|=5\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
Vậy \(x\in\left\{5;-5\right\}\)
e) \(37-3.|x|=2^3-4\)
\(\Rightarrow37-3.|x|=8-4\)
\(\Rightarrow37-3.|x|=4\)
\(\Rightarrow3.|x|=33\)
\(\Rightarrow|x|=11\)
\(\Rightarrow\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
Vậy \(x\in\left\{11;-11\right\}\)
f) \(|x|+|-5|=|-37|\)
\(\Rightarrow|x|+5=37\)
\(\Rightarrow|x|=32\)
\(\Rightarrow\orbr{\begin{cases}x=32\\x=-32\end{cases}}\)
Vậy \(x\in\left\{32;-32\right\}\)
g)\(5.|x+9|=40\)
\(\Rightarrow|x+9|=8\)
\(\Rightarrow\orbr{\begin{cases}x+9=8\\x+9=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-17\end{cases}}\)
Vậy \(x\in\left\{-1;-17\right\}\)
h) \(-\frac{5}{6}+\frac{8}{3}+\frac{-29}{6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow\frac{-5}{6}+\frac{16}{6}+\frac{-29}{6}\le x\le\frac{-1}{2}+\frac{4}{2}+\frac{5}{2}\)
\(\Rightarrow-3\le x\le4\)
Vậy \(-3\le x\le4\)