\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)

<=>  \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

<=>  \(\frac{-1}{x+3}=\frac{1}{2017}\)

=>  \(x+3=-2017\)

<=>  \(x=-2020\)

Vậy...

26 tháng 8 2018

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)

\(\Rightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{x}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

\(\Rightarrow-\frac{1}{x+3}=\frac{1}{2017}\)

\(\Rightarrow x+3=-2017\)

\(\Rightarrow x=-2020\)

22 tháng 6 2019

Phần a vs phần b tính toán thông thường thôi mà bạn, vs 1 h/s lớp 7 thì ít nhất phải làm được chứ?? :((

a) \(x-\frac{4}{5}=\frac{7}{10}-\frac{3}{4}\)

\(\Leftrightarrow x-\frac{4}{5}=\frac{-1}{20}\)

\(\Leftrightarrow x=\frac{-1}{20}+\frac{4}{5}=\frac{15}{20}=\frac{3}{4}\)

b) \(2\frac{1}{3}-x=\frac{-5}{9}+2x\)

\(\Leftrightarrow2\frac{1}{3}-\frac{-5}{9}=2x+x\)

\(\Leftrightarrow3x=\frac{7}{3}+\frac{5}{9}\)

\(\Leftrightarrow3x=\frac{26}{9}\)

\(\Leftrightarrow x=\frac{26}{9}:3=\frac{26}{27}\)

d) .............................. ( Đề bài)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}\)\(-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)

\(\Leftrightarrow-\frac{1}{x+3}=\frac{1}{2010}\)

\(\Leftrightarrow\frac{1}{-\left(x+3\right)}=\frac{1}{2010}\)\(\Leftrightarrow-\left(x+3\right)=2010\)

\(\Leftrightarrow-x-3=2010\) \(\Leftrightarrow-x=2010+3=2013\)

\(\Leftrightarrow x=-2013\)

Bạn tự kết luận nha!

22 tháng 6 2019

c)

\(\frac{x+3}{2016}+\frac{x+2}{2017}=\frac{x+1}{2018}+\frac{x}{2019}\\ \Leftrightarrow\frac{x+3}{2016}+1+\frac{x+2}{2017}+1=\frac{x+1}{2018}+1+\frac{x}{2019}+1\\ \Leftrightarrow\frac{x+2019}{2016}+\frac{x+2019}{2017}-\frac{x+2019}{2018}-\frac{x+2019}{2019}=0\\ \Leftrightarrow\left(x+2019\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\\ \Rightarrow x-2019=0\\ \Rightarrow x=2019\)

1 tháng 9 2019

a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

⇒ x + 1 = 18

⇒ x = 17

Vậy x = 17

b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)

\(1-\frac{1}{x+3}=\frac{147}{148}\)

\(\frac{1}{x+3}=1-\frac{147}{148}\)

\(\frac{1}{x+3}=\frac{1}{148}\)

⇒ x + 3 = 148

⇒ x = 145

Vậy x = 145

15 tháng 6 2016

máy tính tính dc vô nghiệm

15 tháng 6 2016

Giải ra mk vs

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

\(\Leftrightarrow3\left(x^2-4x+4\right)-\dfrac{5}{4}\left(9x^2+6x+1\right)=\dfrac{4}{3}\left(-x^2+4x-3\right)-\dfrac{7}{6}x\left(x-3\right)\)

\(\Leftrightarrow3x^2-12x+12-\dfrac{45}{4}x^2-\dfrac{15}{2}x-\dfrac{5}{4}=-\dfrac{4}{3}x^2+\dfrac{16}{3}x-4-\dfrac{7}{6}x^2+\dfrac{7}{2}x\)

\(\Leftrightarrow x^2\cdot\dfrac{-33}{4}-\dfrac{39}{2}x+\dfrac{43}{4}+\dfrac{5}{2}x^2-\dfrac{53}{6}x+4=0\)

\(\Leftrightarrow x^2\cdot\dfrac{-23}{4}-\dfrac{85}{3}x+\dfrac{59}{4}=0\)

\(\Leftrightarrow12\left(\dfrac{-23}{4}x^2-\dfrac{85}{3}x+\dfrac{59}{4}\right)=0\)

\(\Leftrightarrow-69x^2-340x+177=0\)

\(\Leftrightarrow69x^2+340x-177=0\)

\(\text{Δ}=340^2-4\cdot69\cdot\left(-177\right)=164452\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-170-\sqrt{41113}}{69}\\x_2=\dfrac{-170+\sqrt{41113}}{69}\end{matrix}\right.\)

27 tháng 7 2016

Hỏi đáp Toán

\(\Leftrightarrow\dfrac{1}{2}\left(x^2-4x+4\right)-\dfrac{13}{3}\left(x^2+6x+9\right)=\dfrac{1}{4}\left(x^2-3x+2\right)-2\left(9x^2+3x-2\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}-2x+2-\dfrac{13}{3}x^2-26x-39=\dfrac{1}{4}x^2-\dfrac{3}{4}x+\dfrac{1}{2}-18x^2-6x+4\)

\(\Leftrightarrow x^2\cdot\dfrac{167}{12}-\dfrac{85}{4}x-\dfrac{83}{2}=0\)

\(\Leftrightarrow167x^2-255x-498=0\)

\(\text{Δ}=\left(-255\right)^2-4\cdot167\cdot\left(-498\right)=397689\)

Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{255-\sqrt{397689}}{334}\\x_2=\dfrac{255+\sqrt{397689}}{334}\end{matrix}\right.\)