Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tung từng vế một thôi
bạn nhác quá éo chịu suy nghĩ
bài này dễ vl
Bài 1:
a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\frac{1}{5x+6}=\frac{1}{2011}\)
=> 5x + 6 = 2011
5x = 2011 - 6
5x = 2005
x = 2005 : 5
x = 401
b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
c, ghi lại đề
d, ghi lại đề
Bài 2:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Đặt: \(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{199}{1}\)là B
Cộng 1 vào mỗi phần số trừ phân số cuối cùng ta sẽ được:
B= \(\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}\)
=> B= \(200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\) => B= \(200\) X A
=> \(\frac{A}{B}\)\(=\frac{1}{200}\)
=> \(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)
=>\(x-20\) =\(\frac{1}{2000}:\frac{1}{200}\)
=> \(x-20=\).......................... Bạn tự làm tiếp nhé, chúc bạn học tốt !!!^^\(\)
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{3.7}+\frac{1}{4.7}+\frac{1}{4.9}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{2.3.7}+\frac{2}{2.4.7}+\frac{2}{2.4.9}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{6}-\frac{2}{7}+\frac{2}{7}-\frac{2}{8}+....+\frac{2}{x}-\frac{2}{x+1}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{6}-\frac{2}{x+1}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{6}-\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1}{3}-\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{3}{9}-\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{18}\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=17\)
câu a khó quá.Để nghĩ.
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{21\cdot2}+\frac{2}{28\cdot2}+\frac{2}{36\cdot2}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Rightarrow\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+....+\frac{1}{x\left(x-1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{x-5}{6x+6}=\frac{1}{9}\)
\(\Rightarrow9\left(x-5\right)=6x+6\)
\(\Rightarrow9x-45=6x+6\)
\(\Rightarrow9x-6x=51\)
\(\Rightarrow3x=51\)
Tới đây bí:v
a)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+2\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+2\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+2}=\frac{2}{9}:2\)
\(\frac{1}{x+2}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+2}=\frac{1}{18}\)
=>x+2=18
=>x=16
b tương tự nhân nó với 1/2
a)\(\frac{1}{5.8}+\frac{1}{8.11}+........+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{x}-\frac{1}{x+3}\right)\)=\(\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)\)
=\(\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}\)=\(\frac{101}{1540}:\frac{1}{3}\)=\(\frac{303}{1540}\)
\(\frac{1}{x+3}\)=\(\frac{1}{5}-\frac{303}{1540}\)=\(\frac{1}{308}\)
\(\Rightarrow\)x+3=308
\(\Rightarrow\)x=308-3=305
b)Mk chưa nghĩ ra
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{2}{9}\)
\(\Rightarrow\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{x+1-6}{6\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{x-5}{6x+6}=\frac{1}{9}\)
\(\Rightarrow9x-45=6x+6\)
\(\Rightarrow3x=51\)
\(\Rightarrow x=17\)
Vậy x = 17
g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
ở câu 1 ở mỗi phẫn số chúng ta cộng thêm 1, tổng là ta cộng thêm 5. Lấy 5 + -5=0. Rồi ta được tất cả tử là x+200,đặt chung ra ngoài,từ đó tính x=-200
Câu 2: => 2/42 + 2/56 + 2/72 + ... + 2/x(x+1) = 2/9
=> 2/6*7+2/7*8+...+2/x(X+1) = 2/9