Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2^x.4=128\Leftrightarrow2^x=32\Leftrightarrow2^x=2^5\Rightarrow x=5\)
b)\(\left(2x+1\right)=125\Leftrightarrow2x=126\Leftrightarrow x=13\)
c)\(x^{15}=x\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
d) \(\left(x-5\right)^4=\left(x-5\right)^5\Leftrightarrow\orbr{\begin{cases}x-5=1\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}\)
a,
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
b,
2x = 124
x = 62
c,
\(x^{15}-x=0\)
\(x\left(x^{14}-1\right)=0\)
\(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^{14}=1\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
d,
\(0=\left(x-5\right)^5-\left(x-5\right)^4\)
\(\left(x-5\right)^4\left(x-5-1\right)=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\x-6=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
a. 2x.4=128
2x =32
=> x = 5
b. 2x+1=125
2x = 125-1
2x = 124
x = 62
c. x15=x
=> x \(\in\left\{0;\pm1\right\}\)
a/ 440 + 2 [ 125 - x ] = 546
==> 2 [ 125 - x ] = 546 - 440
==> 2 [ 125 - x ] 106
==> 125 - x = 106 : 2
==> 125 - x = 53 ==> x = 125 - 53 =72
b/ 7x - 33 = 27 : 24
==> 7x - 27 = 27-4 = 23 = 8
==> 7x = 8+ 27
==> 7x = 35 ==> x = 35 : 7 = 5
c/ [ 12x - 43 ] . 83 = 4 . 84
==> [ 12x - 26 ] . 29 = 22 . 212
==> [ 12x - 26 ] . 29 = 214
==> [ 12x - 26 ] = 214 : 29 = 25
==>. 12x = 25 + 26 = 96
==> x = 96 : 12 = 8
d/ 123 - 5. [ x + 4 ] = 38
==> 5. [ x + 4 ] = 123 - 38
==> 5. [ x + 4 ] = 85
==> x + 4 = 85 : 5
==> x + 4 = 17
==> x = 17 - 4 = 13
e/ [ 2600 + 6400 ] - 3.x = 1200
==> 9000 - 3x = 1200
==> 3x = 9000 -1200 = 7800
==> x = 7800 : 3 = 2600
f/ x2 - 72 : 36 = 23
==> x2 - 2 = 23
==> x2 = 23 + 2
==>x2 = 25
==> x2 = 52
==> x = 5
5^6+5^7+5^8
=5^6.(1+5+5^2)
=5^6.31 chia hết cho 31
7^6+7^5-7^4
=7^4.(7^2+7-1)
=7^4.55 chia hết cho 11
BÀI 2:
a) \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\) \(⋮\)\(31\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)
c) \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)
d) mk chỉnh đề
\(1+2+2^2+2^3+...+2^{59}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)
\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)
Bài làm
a) 200 - ( 2x + 6 ) = 43 b) 32 ( x + 4 ) - 52 = 5.22
2x + 6 = 200 - 64 32 ( x + 4 ) = 20 + 25
2x + 6 = 136 32 ( x + 4 ) = 45
2x = 136 - 6 x + 4 = 45 : 9 (chỗ này là x + 4 = 45 : 32 )
2x = 130 x + 4 = 5
x = 130 : 2 x = 5 - 4
x = 65 x = 1
Vậy x = 65 Vậy x = 1
c) ( x - 36 ) : 18 = 12 d) ( x - 47 ) - 115 = 0
x - 36 = 12 * 18 x - 47 = 115
x - 36 = 216 x = 115 + 47
x = 216 + 36 x = 162
x = 252 Vậy x = 162
Vậy x = 252
e) 0 : x = 0 f) 3x = 9
Vì 0 : x = 0 => 3x = 32
=> \(\frac{0}{x}=0\) => x = 2
Mà số 0 không bao giờ ở mẫu số. Vậy x = 2
=> \(x\in\left\{N\right\}\)
Vậy \(x\in\left\{N\right\}\)
g) 4x = 64
=> 4x = 43
=> x = 3
Vậy x = 3
# Chúc bạn học tốt #
a) \(63^7< 64^7=\left(2^6\right)^7=2^{42}< 2^{48}=\left(2^4\right)^{12}=16^{12}\Rightarrow63^7< 16^{12}\)
b) \(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}>8^{75}=\left(2^3\right)^{75}=2^{225}\)
c) \(9^{20}=\left(3^2\right)^{20}=3^{40}>3^{39}=\left(3^3\right)^{13}=27^{13}\Rightarrow9^{20}>27^{13}\)
bài 2:
a)\(2^x=32\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
b)\(2x+3^4=7^2\Leftrightarrow2x+81=49\Leftrightarrow2x=-32\Leftrightarrow x=-16\)
c)\(12x-33=3^2\Leftrightarrow12x-33=9\Leftrightarrow12x=42\Leftrightarrow x=\frac{7}{2}\)
\(0=\left(x-5\right)^5-\left(x-5\right)^4\)
\(\left(x-5\right)^4\left(x-5-1\right)=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\x-6=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
a,
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
b,
2x = 124
x = 62
c,
\(x^{15}-x=0\)
\(x\left(x^{14}-1\right)=0\)
\(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)