K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

b, ( x+ x ) ( x+ x + 1 )=6

=> ( x+ x ) ( x+ x + 1) - 6 = 0

=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0

=> x - 1= 0 => x= 1

=> x + 2 = 0 => x = -2

=>  x + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )

Vậy x = 1; x= -2

21 tháng 11 2017

a) \(2x^3-x^2+3x+6=0\)

\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)

\(x^2\left(2-x\right)-3\left(2-x\right)=0\)

\(\left(x^2-3\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)

           vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)

25 tháng 10 2021

\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)

25 tháng 10 2021

a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)

c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)

9 tháng 12 2021

\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

23 tháng 10 2021

e: ta có: \(4x^2+4x-6=2\)

\(\Leftrightarrow4x^2+4x-8=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

f: Ta có: \(2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

11 tháng 10 2021

a: ta có: \(x^2+3x-\left(2x+6\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

b: Ta có: \(5x+20-x^2-4x=0\)

\(\Leftrightarrow\left(x+4\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)

17 tháng 10 2021

\(a,\Leftrightarrow3\left(x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow\left(x^2-2\right)\left(6x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=2\\6x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=-\dfrac{1}{6}\end{matrix}\right.\\ c,\Leftrightarrow\left(x-2013\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2013\\x=\dfrac{1}{4}\end{matrix}\right.\\ d,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+1\right)=4\)

\(\Leftrightarrow x^3-1-x^3-x=4\)

\(\Leftrightarrow-x=5\)

hay x=-5

c: Ta có: \(\left(2x-1\right)^3+\left(x+2\right)^3-9x\left(x+1\right)\left(x-1\right)=7\)

\(\Leftrightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8-9x^3+9x=7\)

\(\Leftrightarrow-6x^2+27x=0\)

\(\Leftrightarrow-3x\left(2x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{9}{2}\end{matrix}\right.\)

13 tháng 8 2021

a)\(3x\left(x-1\right)+2x^2\left(x-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(3+2x\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x-1=0\\3+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\\x=\dfrac{-3}{2}\end{matrix}\right.\)

a: Ta có: \(3x^2-3x+2x^3-2x^2=0\)

\(\Leftrightarrow2x^3+x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+x-3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b: Ta có: \(x^3+27=-x^2+9\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-3\right)=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

a: =>(5x+3)(x-1)=0

=>x=1 hoặc x=-3/5

b: =>(x-3)(4x-1-5x-2)=0

=>(x-3)(-x-3)=0

=>x=-3 hoặc x=3

c: =>(x+6)(3x-1+x-6)=0

=>(x+6)(4x-7)=0

=>x=7/4 hoặc x=-6

10 tháng 10 2021

tham khảo: https://hoc24.vn/cau-hoi/.2256230161739

10 tháng 10 2021

a) ⇔ \(4x^2+4x-x-1=0\)

⇔ \(4x^2+3x-1=0\)

⇔ \(4x(x+1)-(x+1)=0\)

⇔ \((x+1)(4x-1)=0\)

⇒ \(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy...

b) \(x^3-4x^2+4x=0\)

⇔ \(x^2(x-2)-2x(x-2)=0\)

⇔ \((x-2)(x^2-2x)=0\)

⇒ \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Vậy...

c) \(x^2-3x+2=0\)

⇔ \(x(x-2)-(x-2)=0\)

⇔ \((x-1)(x-2)=0\)

⇒ \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy...