K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

1,=> 36x^2-12x-36x^2+27x=30

   =>15x                           =30

   =>    x                           =2

2,=>5x-2x^2+2x^2-2x=15

  =>3x                      =15

  =>x                         =5

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

\(\Leftrightarrow-2x+1-x-2=8\cdot\left(-4x^2+6x-2x\right)+4\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow-3x-1+32x^2-48x+16x-4x^2+8x-4=0\)

\(\Leftrightarrow28x^2-27x-5=0\)

\(\text{Δ}=\left(-27\right)^2-4\cdot28\cdot\left(-5\right)=1289>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{27-\sqrt{1289}}{56}\\x_2=\dfrac{27+\sqrt{1289}}{56}\end{matrix}\right.\)

9 tháng 2 2020

cái bài 2 câu 1 câu 2 và câu 3 sửa cái vế phải lại thành 3/2-1-2x/4 và -15/5 và 2.(x-1)/5

1 tháng 10 2016

1/ x² - 5x + 6 = 0 
⇔ x² - 2x - 3x + 6 = 0 
⇔ x(x - 2) - 3(x - 2) = 0 
⇔ (x - 2)(x - 3) = 0 
⇒S = {2 ; 3}.

1 tháng 10 2016

1) \(x^2+5x+6=0\)

\(\Leftrightarrow x^2+2x+3x+6=0\)

\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)

2) \(2\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\2-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=2\end{array}\right.\)

3) \(x^2+4x+3=0\)

\(\Leftrightarrow x^2+x+3x+3=0\)

\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)

4) \(2x^2-3x-5=0\)

\(\Leftrightarrow2x^2+2x-5x-5=0\)

\(\Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=\frac{5}{2}\end{array}\right.\)

7 tháng 5 2017

1.x(x2-1)=0
      x2-1=0:x
         x2=1
         x=1

 

7 tháng 5 2017
  1. <=>  x=0 hoặc x2=1 <=> x=0 hoặc x=1, x= -1
  2. <=> (x+6)(3x-1+1)=0 <=.>X=6 hoặc  X=0
  3. <=> 4x2+20x+25 = x2+4x+4  <=> 3x2+16x+21 =0 <=> 3x2+9x+7x+21=0 <=> 3x(x+3)+7(x+3)=0 <=> (x+3)(3x+7)=0 <=> X=0 hoặc X=-7/3
  4. <=> 2X(2X-3) +(2X-3)(2-5X)=0 <=> (2X-3)(2X+2-5X)=0 <=> (2X-3)(2-3X) =0 <=> X=3/2 hoặc X=2/3
  5. <=> (X-2)(X+1) - (X-2)(X+2) =0 <=> (X-2)(X+1-X-2)=0 <=> (X-2)(-1) =0 <=> X=2
4 tháng 6 2017

1) x(x-y)+y(x-y)

    =(x-y)(x+y)   (đặt nhân tử chung)

    =x^2-y^2        (hằng đẳng thức số 3)

5 tháng 6 2017

1. \(x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2\)

\(2.x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+y.x^{n-1}-y.x^{n-1}-y^n=x^n-y^n\)